14 research outputs found

    Worldwide diagnostic reference levels for single-photon emission computed tomography myocardial perfusion imaging: findings from INCAPS.

    Get PDF
    OBJECTIVES: This study sought to establish worldwide and regional diagnostic reference levels (DRLs) and achievable administered activities (AAAs) for single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI). BACKGROUND: Reference levels serve as radiation dose benchmarks to compare individual laboratories against aggregated data, helping to identify sites in greatest need of dose reduction interventions. DRLs for SPECT MPI have previously been derived from national or regional registries. To date there have been no multiregional reports of DRLs for SPECT MPI from a single standardized dataset. METHODS: Data were submitted voluntarily to the INCAPS (International Atomic Energy Agency Nuclear Cardiology Protocols Study), a cross-sectional, multinational registry of MPI protocols. A total of 7,103 studies were included. DRLs and AAAs were calculated by protocol for each world region and for aggregated worldwide data. RESULTS: The aggregated worldwide DRLs for rest-stress or stress-rest studies employing technetium Tc 99m-labeled radiopharmaceuticals were 11.2 mCi (first dose) and 32.0 mCi (second dose) for 1-day protocols, and 23.0 mCi (first dose) and 24.0 mCi (second dose) for multiday protocols. Corresponding AAAs were 10.1 mCi (first dose) and 28.0 mCi (second dose) for 1-day protocols, and 17.8 mCi (first dose) and 18.7 mCi (second dose) for multiday protocols. For stress-only technetium Tc 99m studies, the worldwide DRL and AAA were 18.0 mCi and 12.5 mCi, respectively. Stress-first imaging was used in 26% to 92% of regional studies except in North America where it was used in just 7% of cases. Significant differences in DRLs and AAAs were observed between regions. CONCLUSIONS: This study reports reference levels for SPECT MPI for each major world region from one of the largest international registries of clinical MPI studies. Regional DRLs may be useful in establishing or revising guidelines or simply comparing individual laboratory protocols to regional trends. Organizations should continue to focus on establishing standardized reporting methods to improve the validity and comparability of regional DRLs

    Nuclear cardiology practices and radiation exposure in Africa: results from the IAEA Nuclear Cardiology Protocols Study (INCAPS)

    Get PDF
    OBJECTIVE: While nuclear myocardial perfusion imaging (MPI) offers many benefits to patients with known or suspected cardiovascular disease, concerns exist regarding radiation-associated health effects. Little is known regarding MPI practice in Africa. We sought to characterise radiation doses and the use of MPI best practices that could minimise radiation in African nuclear cardiology laboratories, and compare these to practice worldwide. METHODS: Demographics and clinical characteristics were collected for a consecutive sample of 348 patients from 12 laboratories in six African countries over a one-week period from March to April 2013. Radiation effective dose (ED) was estimated for each patient. A quality index (QI) enumerating adherence to eight best practices, identified a priori by an IAEA expert panel, was calculated for each laboratory. We compared these metrics with those from 7 563 patients from 296 laboratories outside Africa. RESULTS: Median (interquartile range) patient ED in Africa was similar to that of the rest of the world [9.1 (5.1-15.6) vs 10.3 mSv (6.8-12.6), p = 0.14], although a larger proportion of African patients received a low ED, ≀ 9 mSv targeted in societal recommendations (49.7 vs 38.2%, p < 0.001). Bestpractice adherence was higher among African laboratories (QI score: 6.3 ± 1.2 vs 5.4 ± 1.3, p = 0.013). However, median ED varied significantly among African laboratories (range: 2.0-16.3 mSv; p < 0.0001) and QI range was 4-8. CONCLUSION: Patient radiation dose from MPI in Africa was similar to that in the rest of the world, and adherence to best practices was relatively high in African laboratories. Nevertheless there remain opportunities to further reduce radiation exposure to African patients from MPI

    Worldwide variation in the use of nuclear cardiology camera technology, reconstruction software, and imaging protocols

    Get PDF
    OBJECTIVES: This study sought to describe worldwide variations in the use of myocardial perfusion imaging hardware, software, and imaging protocols and their impact on radiation effective dose (ED). BACKGROUND: Concerns about long-term effects of ionizing radiation have prompted efforts to identify strategies for dose optimization in myocardial perfusion scintigraphy. Studies have increasingly shown opportunities for dose reduction using newer technologies and optimized protocols. METHODS: Data were submitted voluntarily to the INCAPS (International Atomic Energy Agency Nuclear Cardiology Protocols Study) registry, a multinational, cross-sectional study comprising 7,911 imaging studies from 308 labs in 65 countries. The study compared regional use of camera technologies, advanced post-processing software, and protocol characteristics and analyzed the influence of each factor on ED. RESULTS: Cadmium-zinc-telluride and positron emission tomography (PET) cameras were used in 10% (regional range 0% to 26%) and 6% (regional range 0% to 17%) of studies worldwide. Attenuation correction was used in 26% of cases (range 10% to 57%), and advanced post-processing software was used in 38% of cases (range 26% to 64%). Stress-first single-photon emission computed tomography (SPECT) imaging comprised nearly 20% of cases from all world regions, except North America, where it was used in just 7% of cases. Factors associated with lower ED and odds ratio for achieving radiation dose ≀9 mSv included use of cadmium-zinc-telluride, PET, advanced post-processing software, and stress- or rest-only imaging. Overall, 39% of all studies (97% PET and 35% SPECT) were ≀9 mSv, while just 6% of all studies (32% PET and 4% SPECT) achieved a dose ≀3 mSv. CONCLUSIONS: Newer-technology cameras, advanced software, and stress-only protocols were associated with reduced ED, but worldwide adoption of these practices was generally low and varied significantly between regions. The implementation of dose-optimizing technologies and protocols offers an opportunity to reduce patient radiation exposure across all world regions

    Assessing the need for nuclear cardiology and other advanced cardiac imaging modalities in the developing world.

    No full text
    Background: In 2005, 80% of cardiovascular disease (CVD) deaths occurred in low- to middle-income countries (i.e., developing nations). Cardiovascular imaging, such as myocardial perfusion SPECT, is one method that may be applied to detect and foster improved detection of at-risk patients. This document will review the availability and utilization for nuclear cardiology procedures worldwide and propose strategies to devise regional centers of excellence to achieve quality imaging around the world. Methods: As a means to establish the current state of nuclear cardiology, International Atomic Energy Agency member and non-member states were queried as to annual utilization of nuclear cardiology procedures. Other sources for imaging statistics included data from medical societies (American Society of Nuclear Cardiology, European Society of Cardiology, and the European Association of Nuclear Medicine) and nuclear cardiology working groups within several nations. Utilization was calculated by dividing annual procedural volume by 2007 population statistics (/100,000) and categorized as high (>1,000/100,000), moderate-high (250-999/100,000), moderate (100-249/100,000), low-moderate (50-99/100,000) and low (<50/100,000). Results: High nuclear cardiology utilization was reported in the United States, Canada, and Israel. Most Western European countries, Australia, and Japan reported moderate-high utilization. With the exception of Argentina, Brazil, Colombia and Uruguay, South America had low usage. This was also noted across Eastern Europe, Russia, and Asia. Utilization patterns generally mirrored each country's gross domestic product. However, nuclear cardiology utilization was higher for developing countries neighboring moderate-high "user" countries (e.g., Algeria and Egypt); perhaps the result of accessible high-quality training programs. Conclusions: Worldwide utilization patterns for nuclear cardiology vary substantially and may be influenced by physician access to training and education programs. Development of regional training centers of excellence can guide utilization of nuclear cardiology through the application of guideline- and appropriateness-driven testing, training, continuing education, and quality assurance programs aiding developing nations to confront the epidemics of CV

    Current worldwide nuclear cardiology practices andradiationexposure: results from the 65 country IAEA nuclear cardiology protocols cross-sectional study (INCAPS)

    Get PDF
    Aims To characterize patient radiation doses from nuclear myocardial perfusion imaging (MPI) and the use of radiationoptimizing 'best practices' worldwide, and to evaluate the relationship between laboratory use of best practices and patient radiation dose. Methods and results We conducted an observational cross-sectional study of protocols used for all 7911 MPI studies performed in 308 nuclear cardiology laboratories in 65 countries for a single week in March-April 2013. Eight 'best practices' relating to radiation exposurewere identified a priori by an expert committee, and a radiation-related quality index (QI) devised indicating the number of best practices used by a laboratory. Patient radiation effective dose (ED) ranged between 0.8 and 35.6 mSv (median 10.0 mSv). Average laboratory ED ranged from 2.2 to 24.4 mSv (median 10.4 mSv); only 91 (30%) laboratories achieved the median ED ≀ 9 mSv recommended by guidelines. Laboratory QIs ranged from 2 to 8 (median 5). Both ED and QI differed significantly between laboratories, countries, and world regions. The lowest median ED (8.0 mSv), in Europe, coincided with high best-practice adherence (mean laboratory QI 6.2). The highest doses (median 12.1 mSv) and low QI (4.9) occurred in Latin America. In hierarchical regression modelling, patients undergoing MPI at laboratories following more 'best practices' had lower EDs Conclusion Marked worldwide variation exists in radiation safety practices pertaining to MPI, with targeted EDs currently achieved in a minority of laboratories. The significant relationship between best-practice implementation and lower doses indicates numerous opportunities to reduce radiation exposure from MPI globally

    Nuclear cardiology practice and associated radiation doses in Europe: results of the IAEA Nuclear Cardiology Protocols Study (INCAPS) for the 27 European countries

    Get PDF
    Purpose: Nuclear cardiology is widely used to diagnose coronary artery disease and to guide patient management, but data on current practices, radiation dose-related best practices, and radiation doses are scarce. To address these issues, the IAEA conducted a worldwide study of nuclear cardiology practice. We present the European subanalysis. Methods: In March 2013, the IAEA invited laboratories across the world to document all SPECT and PET studies performed in one week. The data included age, gender, weight, radiopharmaceuticals, injected activities, camera type, positioning, hardware and software. Radiation effective dose was calculated for each patient. A quality score was defined for each laboratory as the number followed of eight predefined best practices with a bearing on radiation exposure (range of quality score 0&nbsp;–&nbsp;8). The participating European countries were assigned to regions (North, East, South, and West). Comparisons were performed between the four European regions and between Europe and the rest-of-the-world (RoW). Results: Data on 2,381 European patients undergoing nuclear cardiology procedures in 102 laboratories in 27 countries were collected. A cardiac SPECT study was performed in 97.9&nbsp;% of the patients, and a PET study in 2.1&nbsp;%. The average effective dose of SPECT was 8.0 ± 3.4&nbsp;mSv (RoW 11.4 ± 4.3&nbsp;mSv; P &lt; 0.001) and of PET was 2.6 ± 1.5&nbsp;mSv (RoW 3.8 ± 2.5&nbsp;mSv; P &lt; 0.001). The mean effective doses of SPECT and PET differed between European regions (P &lt; 0.001 and P = 0.002, respectively). The mean quality score was 6.2 ± 1.2, which was higher than the RoW score (5.0 ± 1.1; P &lt; 0.001). Adherence to best practices did not differ significantly among the European regions (range 6 to 6.4; P = 0.73). Of the best practices, stress-only imaging and weight-adjusted dosing were the least commonly used. Conclusion: In Europe, the mean effective dose from nuclear cardiology is lower and the average quality score is higher than in the RoW. There is regional variation in effective dose in relation to the best practice quality score. A possible reason for the differences between Europe and the RoW could be the safety culture fostered by actions under the Euratom directives and the implementation of diagnostic reference levels. Stress-only imaging and weight-adjusted activity might be targets for optimization of European nuclear cardiology practice

    Comparison of Radiation Doses and Best-Practice Use for Myocardial Perfusion Imaging in US and Non-US Laboratories: Findings From the IAEA (International Atomic Energy Agency) Nuclear Cardiology Protocols Study

    Get PDF
    not availabl

    Opportunities for improvement on current nuclear cardiology practices and radiation exposure in Latin America: Findings from the 65-country IAEA Nuclear Cardiology Protocols cross-sectional Study (INCAPS)

    No full text
    Background: Comparison of Latin American (LA) nuclear cardiology (NC) practice with that in the rest of the world (RoW) will identify areas for improvement and lead to educational activities to reduce radiation exposure from NC. Methods and Results: INCAPS collected data on all SPECT and PET procedures performed during a single week in March-April 2013 in 36 laboratories in 10 LA countries (n&nbsp;=&nbsp;1139), and 272 laboratories in 55 countries in RoW (n&nbsp;=&nbsp;6772). Eight “best practices” were identified a priori and a radiation-related Quality Index (QI) was devised indicating the number used. Mean radiation effective dose (ED) in LA was higher than in RoW (11.8 vs 9.1&nbsp;mSv, p&nbsp;&lt;&nbsp;0.001). Within a populous country like Brazil, a wide variation in laboratory mean ED was found, ranging from 8.4 to 17.8&nbsp;mSv. Only 11% of LA laboratories achieved median ED &lt;9&nbsp;mSv, compared to 32% in RoW (p&nbsp;&lt;&nbsp;0.001). QIs ranged from 2 in a laboratory in Mexico to 7 in a laboratory in Cuba. Three major opportunities to reduce ED for LA patients were identified: (1) more laboratories could implement stress-only imaging, (2) camera-based methods of ED reduction, including prone imaging, could be more frequently used, and (3) injected activity of 99mTc could be adjusted reflecting patient weight/habitus. Conclusions: On average, radiation dose from NC is higher in LA compared to RoW, with median laboratory ED &lt;9&nbsp;mSv achieved only one third as frequently as in RoW. Opportunities to reduce radiation exposure in LA have been identified and guideline-based recommendations made to optimize protocols and adhere to the “as low as reasonably achievable” (ALARA) principle
    corecore