17 research outputs found

    Somatostatin Inhibits Cell Migration and Reduces Cell Counts of Human Keratinocytes and Delays Epidermal Wound Healing in an Ex Vivo Wound Model

    Get PDF
    The peptide hormone somatostatin (SST) and its five G protein-coupled receptors (SSTR1-5) were described to be present in the skin, but their cutaneous function(s) and skin-specific signalling mechanisms are widely unknown. By using receptor specific agonists we show here that the SSTRs expressed in keratinocytes are functionally coupled to the inhibition of adenylate cyclase. In addition, treatment with SSTR4 and SSTR5/1 specific agonists significantly influences the MAP kinase signalling pathway. As epidermal hormone receptors in general are known to regulate re-epithelialization following skin injury, we investigated the effect of SST on cell counts and migration of human keratinocytes. Our results demonstrate a significant inhibition of cell migration and reduction of cell counts by SST. We do not observe an effect on apoptosis and necrosis. Analysis of signalling pathways showed that somatostatin inhibits cell migration independent of its effect on cAMP. Migrating keratinocytes treated with SST show altered cytoskeleton dynamics with delayed lamellipodia formation. Furthermore, the activity of the small GTPase Rac1 is diminished, providing evidence for the control of the actin cytoskeleton by somatostatin receptors in keratinocytes. While activation of all receptors leads to redundant effects on cell migration, only treatment with a SSTR5/1 specific agonist resulted in decreased cell counts. In accordance with reduced cell counts and impaired migration we observe delayed re-epithelialization in an ex vivo wound healing model. Consequently, our experiments suggest SST as a negative regulator of epidermal wound healing

    Non-vascular smooth muscle cells in the human choroid: distribution, development and further characterization

    No full text
    To characterize further non-vascular smooth muscle cells (NVSMC) in the choroid of the human eye, extensive morphological studies were performed including a three-dimensional distribution of NVSMC in the adult human eye and their appearance during development. Whole mounts and sections through the choroid and sclera of eyes of 42 human donors (between the 13th week of gestation and 89 years of age) were stained with antibodies against smooth muscle actin and other markers for smooth muscle cells. On the basis of their morphological localization, three groups of NVSMC could be distinguished in the adult eyes: (a) a semicircular arrangement of NVSMC in the suprachoroid and inner sclera, around the entry of posterior ciliary arteries and nerves; (b) NVSMC parallel to the vessels in the posterior eye segment between the point of entry of the posterior ciliary arteries and the point of exit of the vortex veins; and (c) a dense plaque-like arrangement of NVSMC in the suprachoroid, overlying the foveal region. The last of these groups showed most pronounced interindividual differences. During development, the first NVSMC to be observed at the 20th week of gestation belonged to group b. A complete NVSMC network was first observed in a 6-year-old donor eye. All three groups stained positive for smoothelin, caldesmon and calponin in all localizations. The NVSMC show a distinct distribution that might reflect different aspects of their function in the choroid and suprachoroid. All cells could be histochemically characterized as truly contractile
    corecore