94 research outputs found
A case study of bovine tuberculosis in an area of County Donegal, Ireland
A descriptive analysis, to investigate the potential risk factors that might have contributed to the increased incidence of bovine tuberculosis (BTB) herd-breakdowns in the reference area of Co. Donegal during the fifth year of the four-area project (FAP), was performed. Seventy two different herds were restricted for BTB during the FAP; 10 of these herds were restricted twice, resulting in a total of 82 BTB breakdowns. During the first four years of the FAP, the number of BTB herd breakdowns in the area varied from a lowest of nine to a maximum of 18 per year, and were geographically dispersed. In the fifth year of the study a considerable increase in the number of BTB breakdowns (n = 32) was observed, and there was a spatial 'cluster' of infected herds in the eastern part of the study area. The increased number of BTB breakdowns during the fifth year most likely occurred because of the recrudescence of infection, herd-to-herd transmission and, to a lesser extent, purchase of infected cattle. Infected badgers remain as a possible but less likely source of infection, especially as an explanation for the cluster of infected herds. The analysis supports the hypothesis that BTB in herds is a problem that cannot be addressed successfully by dedicating our efforts to the elimination of single risk factors. Neither is it a problem that needs to be investigated only at the herd level, but rather at the area level, including groups of contiguous herds
Investigation into pedestrian exposure to near-vehicle exhaust emissions
<p>Abstract</p> <p>Background</p> <p>Inhalation of diesel particulate matter (DPM) is known to have a negative impact on human health. Consequently, there are regulations and standards that limit the maximum concentrations to which persons may be exposed and the maximum concentrations allowed in the ambient air. However, these standards consider steady exposure over large spatial and time scales. Due to the nature of many vehicle exhaust systems, pedestrians in close proximity to a vehicle's tailpipe may experience events where diesel particulate matter concentrations are high enough to cause acute health effects for brief periods of time.</p> <p>Methods</p> <p>In order to quantify these exposure events, instruments which measure specific exhaust constituent concentrations were placed near a roadway and connected to the mouth of a mannequin used as a pedestrian surrogate. By measuring concentrations at the mannequin's mouth during drive-by events with a late model diesel truck, a representative estimate of the exhaust constituent concentrations to which a pedestrian may be exposed was obtained. Typical breathing rates were then multiplied by the measured concentrations to determine the mass of pollutant inhaled.</p> <p>Results</p> <p>The average concentration of diesel particulate matter measured over the duration of a single drive-by test often exceeded the low concentrations used in human clinical studies which are known to cause acute health effects. It was also observed that higher concentrations of diesel particulate matter were measured at the height of a stroller than were measured at the mouth of a mannequin.</p> <p>Conclusion</p> <p>Diesel particulate matter concentrations during drive-by incidents easily reach or exceed the low concentrations that can cause acute health effects for brief periods of time. For the case of a particularly well-tuned late-model year vehicle, the mass of particulate matter inhaled during a drive-by incident is small compared to the mass inhaled daily at ambient conditions. On a per breath basis, however, the mass of particulate matter inhaled is large compared to the mass inhaled at ambient conditions. Finally, it was determined that children, infants, or people breathing at heights similar to that of a passing vehicle's tailpipe may be exposed to higher concentrations of particulate matter than those breathing at higher locations, such as adults standing up.</p
Sex Differences and Autism: Brain Function during Verbal Fluency and Mental Rotation
Autism spectrum conditions (ASC) affect more males than females. This suggests that the neurobiology of autism: 1) may overlap with mechanisms underlying typical sex-differentiation or 2) alternately reflect sex-specificity in how autism is expressed in males and females. Here we used functional magnetic resonance imaging (fMRI) to test these alternate hypotheses. Fifteen men and fourteen women with Asperger syndrome (AS), and sixteen typically developing men and sixteen typically developing women underwent fMRI during performance of mental rotation and verbal fluency tasks. All groups performed the tasks equally well. On the verbal fluency task, despite equivalent task-performance, both males and females with AS showed enhanced activation of left occipitoparietal and inferior prefrontal activity compared to controls. During mental rotation, there was a significant diagnosis-by-sex interaction across occipital, temporal, parietal, middle frontal regions, with greater activation in AS males and typical females compared to AS females and typical males. These findings suggest a complex relationship between autism and sex that is differentially expressed in verbal and visuospatial domains
TRPA1 is essential for the vascular response to environmental cold exposure
This work was supported by the British Heart Foundation and a Capacity Building Award in Integrative Mammalian Biology. It was also supported by Arthritis Research UK and XK is supported by a British Pharmacological Society AJ Clark studentship
Functional Characterization of Circulating Tumor Cells with a Prostate-Cancer-Specific Microfluidic Device
Cancer metastasis accounts for the majority of cancer-related deaths owing to poor response to anticancer therapies. Molecular understanding of metastasis-associated drug resistance remains elusive due to the scarcity of available tumor tissue. Isolation of circulating tumor cells (CTCs) from the peripheral blood of patients has emerged as a valid alternative source of tumor tissue that can be subjected to molecular characterization. However, issues with low purity and sensitivity have impeded adoption to clinical practice. Here we report a novel method to capture and molecularly characterize CTCs isolated from castrate-resistant prostate cancer patients (CRPC) receiving taxane chemotherapy. We have developed a geometrically enhanced differential immunocapture (GEDI) microfluidic device that combines an anti-prostate specific membrane antigen (PSMA) antibody with a 3D geometry that captures CTCs while minimizing nonspecific leukocyte adhesion. Enumeration of GEDI-captured CTCs (defined as intact, nucleated PSMA+/CD45− cells) revealed a median of 54 cells per ml identified in CRPC patients versus 3 in healthy donors. Direct comparison with the commercially available CellSearch® revealed a 2–400 fold higher sensitivity achieved with the GEDI device. Confocal microscopy of patient-derived GEDI-captured CTCs identified the TMPRSS2:ERG fusion protein, while sequencing identified specific androgen receptor point mutation (T868A) in blood samples spiked with only 50 PC C4-2 cells. On-chip treatment of patient-derived CTCs with docetaxel and paclitaxel allowed monitoring of drug-target engagement by means of microtubule bundling. CTCs isolated from docetaxel-resistant CRPC patients did not show any evidence of drug activity. These measurements constitute the first functional assays of drug-target engagement in living circulating tumor cells and therefore have the potential to enable longitudinal monitoring of target response and inform the development of new anticancer agents
MicroRNAs hsa-miR-99b, hsa-miR-330, hsa-miR-126 and hsa-miR-30c: Potential Diagnostic Biomarkers in Natural Killer (NK) Cells of Patients with Chronic Fatigue Syndrome (CFS)/ Myalgic Encephalomyelitis (ME)
Chronic Fatigue Syndrome (CFS/ME) is a complex multisystem disease of unknown aetiology which causes debilitating symptoms in up to 1% of the global population. Although a large cohort of genes have been shown to exhibit altered expression in CFS/ME patients, it is currently unknown whether microRNA (miRNA) molecules which regulate gene translation contribute to disease pathogenesis. We hypothesized that changes in microRNA expression in patient leukocytes contribute to CFS/ME pathology, and may therefore represent useful diagnostic biomarkers that can be detected in the peripheral blood of CFS/ME patients.miRNA expression in peripheral blood mononuclear cells (PBMC) from CFS/ME patients and healthy controls was analysed using the Ambion Bioarray V1. miRNA demonstrating differential expression were validated by qRT-PCR and then replicated in fractionated blood leukocyte subsets from an independent patient cohort. The CFS/ME associated miRNA identified by these experiments were then transfected into primary NK cells and gene expression analyses conducted to identify their gene targets.Microarray analysis identified differential expression of 34 miRNA, all of which were up-regulated. Four of the 34 miRNA had confirmed expression changes by qRT-PCR. Fractionating PBMC samples by cell type from an independent patient cohort identified changes in miRNA expression in NK-cells, B-cells and monocytes with the most significant abnormalities occurring in NK cells. Transfecting primary NK cells with hsa-miR-99b or hsa-miR-330-3p, resulted in gene expression changes consistent with NK cell activation but diminished cytotoxicity, suggesting that defective NK cell function contributes to CFS/ME pathology.This study demonstrates altered microRNA expression in the peripheral blood mononuclear cells of CFS/ME patients, which are potential diagnostic biomarkers. The greatest degree of miRNA deregulation was identified in NK cells with targets consistent with cellular activation and altered effector function
Host hindrance to HIV-1 replication in monocytes and macrophages
Monocytes and macrophages are targets of HIV-1 infection and play critical roles in multiple aspects of viral pathogenesis. HIV-1 can replicate in blood monocytes, although only a minor proportion of circulating monocytes harbor viral DNA. Resident macrophages in tissues can be infected and function as viral reservoirs. However, their susceptibility to infection, and their capacity to actively replicate the virus, varies greatly depending on the tissue localization and cytokine environment. The susceptibility of monocytes to HIV-1 infection in vitro depends on their differentiation status. Monocytes are refractory to infection and become permissive upon differentiation into macrophages. In addition, the capacity of monocyte-derived macrophages to sustain viral replication varies between individuals. Host determinants regulate HIV-1 replication in monocytes and macrophages, limiting several steps of the viral life-cycle, from viral entry to virus release. Some host factors responsible for HIV-1 restriction are shared with T lymphocytes, but several anti-viral mechanisms are specific to either monocytes or macrophages. Whilst a number of these mechanisms have been identified in monocytes or in monocyte-derived macrophages in vitro, some of them have also been implicated in the regulation of HIV-1 infection in vivo, in particular in the brain and the lung where macrophages are the main cell type infected by HIV-1. This review focuses on cellular factors that have been reported to interfere with HIV-1 infection in monocytes and macrophages, and examines the evidences supporting their role in vivo, highlighting unique aspects of HIV-1 restriction in these two cell types
- …