89 research outputs found

    A community based participatory approach to improving health in a Hispanic population

    Get PDF
    ABSTRACT: BACKGROUND: The Charlotte-Mecklenburg region has one of the fastest growing Hispanic communities in the country. This population has experienced disparities in health outcomes and diminished ability to access healthcare services. This city is home to an established practice-based research network (PBRN) that includes community representatives, health services researchers, and primary care providers. The aims of this project are: to use key principles of community-based participatory research (CBPR) within a practice-based research network (PBRN) to identify a single disease or condition that negatively affects the Charlotte Hispanic community; to develop a community-based intervention that positively impacts the chosen condition and improves overall community health; and to disseminate findings to all stakeholders. METHODS/DESIGN: This project is designed as CBPR. The CBPR process creates new social networks and connections between participants that can potentially alter patterns of healthcare utilization and other health-related behaviors. The first step is the development of equitable partnerships between community representatives, providers, and researchers. This process is central to the CBPR process and will occur at three levels -- community members trained as researchers and outreach workers, a community advisory board (CAB), and a community forum. Qualitative data on health issues facing the community -- and possible solutions -- will be collected at all three levels through focus groups, key informant interviews and surveys. The CAB will meet monthly to guide the project and oversee data collection, data analysis, participant recruitment, implementation of the community forum, and intervention deployment. The selection of the health condition and framework for the intervention will occur at the level of a community-wide forum. Outcomes of the study will be measured using indicators developed by the participants as well as geospatial modeling.On completion, this study will: determine the feasibility of the CBPR process to design interventions; demonstrate the feasibility of geographic models to monitor CBPR-derived interventions; and further establish mechanisms for implementation of the CBPR framework within a PBRN

    Genomic fluidity: an integrative view of gene diversity within microbial populations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The dual concepts of pan and core genomes have been widely adopted as means to assess the distribution of gene families within microbial species and genera. The core genome is the set of genes shared by a group of organisms; the pan genome is the set of all genes seen in any of these organisms. A variety of methods have provided drastically different estimates of the sizes of pan and core genomes from sequenced representatives of the same groups of bacteria.</p> <p>Results</p> <p>We use a combination of mathematical, statistical and computational methods to show that current predictions of pan and core genome sizes may have no correspondence to true values. Pan and core genome size estimates are problematic because they depend on the estimation of the occurrence of rare genes and genomes, respectively, which are difficult to estimate precisely because they are rare. Instead, we introduce and evaluate a robust metric - genomic fluidity - to categorize the gene-level similarity among groups of sequenced isolates. Genomic fluidity is a measure of the dissimilarity of genomes evaluated at the gene level.</p> <p>Conclusions</p> <p>The genomic fluidity of a population can be estimated accurately given a small number of sequenced genomes. Further, the genomic fluidity of groups of organisms can be compared robustly despite variation in algorithms used to identify genes and their homologs. As such, we recommend that genomic fluidity be used in place of pan and core genome size estimates when assessing gene diversity within genomes of a species or a group of closely related organisms.</p

    A 3′-Untranslated Region (3′UTR) Induces Organ Adhesion by Regulating miR-199a* Functions

    Get PDF
    Mature microRNAs (miRNAs) are single-stranded RNAs of 18–24 nucleotides that repress post-transcriptional gene expression. However, it is unknown whether the functions of mature miRNAs can be regulated. Here we report that expression of versican 3′UTR induces organ adhesion in transgenic mice by modulating miR-199a* activities. The study was initiated by the hypothesis that the non-coding 3′UTR plays a role in the regulation of miRNA function. Transgenic mice expressing a construct harboring the 3′UTR of versican exhibits the adhesion of organs. Computational analysis indicated that a large number of microRNAs could bind to this fragment potentially including miR-199a*. Expression of versican and fibronectin, two targets of miR-199a*, are up-regulated in transgenic mice, suggesting that the 3′UTR binds and modulates miR-199a* activities, freeing mRNAs of versican and fibronectin from being repressed by miR-199a*. Confirmation of the binding was performed by PCR using mature miR-199a* as a primer and the targeting was performed by luciferase assays. Enhanced adhesion by expression of the 3′UTR was confirmed by in vitro assays. Our results demonstrated that upon arrival in cytoplasm, miRNA activities can be modulated locally by the 3′UTR. Our assay may be developed as sophisticated approaches for studying the mutual regulation of miRNAs and mRNAs in vitro and in vivo. We anticipate that expression of the 3′UTR may be an approach in the development of gene therapy

    Sustainability in the face of institutional adversity : market turbulence, network embeddedness, and innovative orientation

    Get PDF
    corecore