1,396 research outputs found

    Identification and validation of oncologic miRNA biomarkers for Luminal A-like breast cancer

    Get PDF
    Introduction: Breast cancer is a common disease with distinct tumor subtypes phenotypically characterized by ER and HER2/neu receptor status. MiRNAs play regulatory roles in tumor initiation and progression, and altered miRNA expression has been demonstrated in a variety of cancer states presenting the potential for exploitation as cancer biomarkers. Blood provides an excellent medium for biomarker discovery. This study investigated systemic miRNAs differentially expressed in Luminal A-like (ER+PR+HER2/neu-) breast cancer and their effectiveness as oncologic biomarkers in the clinical setting. Methods: Blood samples were prospectively collected from patients with Luminal A-like breast cancer (n=54) and controls (n=56). RNA was extracted, reverse transcribed and subjected to microarray analysis (n=10 Luminal A-like; n=10 Control). Differentially expressed miRNAs were identified by artificial neural network (ANN) data-mining algorithms. Expression of specific miRNAs was validated by RQ-PCR (n=44 Luminal A; n=46 Control) and potential relationships between circulating miRNA levels and clinicopathological features of breast cancer were investigated. Results: Microarray analysis identified 76 differentially expressed miRNAs. ANN revealed 10 miRNAs for further analysis ( miR-19b, miR-29a, miR-93, miR-181a, miR-182, miR-223, miR-301a, miR-423-5p, miR-486-5 and miR-652 ). The biomarker potential of 4 miRNAs ( miR-29a, miR-181a , miR-223 and miR-652 ) was confirmed by RQ-PCR, with significantly reduced expression in blood of women with Luminal A-like breast tumors compared to healthy controls (p=0.001, 0.004, 0.009 and 0.004 respectively). Binary logistic regression confirmed that combination of 3 of these miRNAs ( miR-29a, miR-181a and miR-652 ) could reliably differentiate between cancers and controls with an AUC of 0.80. Conclusion: This study provides insight into the underlying molecular portrait of Luminal A-like breast cancer subtype. From an initial 76 miRNAs, 4 were validated with altered expression in the blood of women with Luminal A-like breast cancer. The expression profiles of these 3 miRNAs, in combination with mammography, has potential to facilitate accurate subtype- specific breast tumor detection

    Entangled-State Cycles of Atomic Collective-Spin States

    Get PDF
    We study quantum trajectories of collective atomic spin states of NN effective two-level atoms driven with laser and cavity fields. We show that interesting ``entangled-state cycles'' arise probabilistically when the (Raman) transition rates between the two atomic levels are set equal. For odd (even) NN, there are (N+1)/2(N+1)/2 (N/2N/2) possible cycles. During each cycle the NN-qubit state switches, with each cavity photon emission, between the states (N/2,m>±N/2,m>)/2(|N/2,m>\pm |N/2,-m>)/\sqrt{2}, where N/2,m>|N/2,m> is a Dicke state in a rotated collective basis. The quantum number mm (>0>0), which distinguishes the particular cycle, is determined by the photon counting record and varies randomly from one trajectory to the next. For even NN it is also possible, under the same conditions, to prepare probabilistically (but in steady state) the Dicke state N/2,0>|N/2,0>, i.e., an NN-qubit state with N/2N/2 excitations, which is of particular interest in the context of multipartite entanglement.Comment: 10 pages, 9 figure

    Exogenous WNT5A and WNT11 proteins rescue CITED2 dysfunction in mouse embryonic stem cells and zebrafish morphants

    Get PDF
    Mutations and inadequate methylation profiles of CITED2 are associated with human congenital heart disease (CHD). In mouse, Cited2 is necessary for embryogenesis, particularly for heart development, and its depletion in embryonic stem cells (ESC) impairs cardiac differentiation. We have now determined that Cited2 depletion in ESC affects the expression of transcription factors and cardiopoietic genes involved in early mesoderm and cardiac specification. Interestingly, the supplementation of the secretome prepared from ESC overexpressing CITED2, during the onset of differentiation, rescued the cardiogenic defects of Cited2-depleted ESC. In addition, we demonstrate that the proteins WNT5A and WNT11 held the potential for rescue. We also validated the zebrafish as a model to investigate cited2 function during development. Indeed, the microinjection of morpholinos targeting cited2 transcripts caused developmental defects recapitulating those of mice knockout models, including the increased propensity for cardiac defects and severe death rate. Importantly, the co-injection of anti-cited2 morpholinos with either CITED2 or WNT5A and WNT11 recombinant proteins corrected the developmental defects of Cited2-morphants. This study argues that defects caused by the dysfunction of Cited2 at early stages of development, including heart anomalies, may be remediable by supplementation of exogenous molecules, offering the opportunity to develop novel therapeutic strategies aiming to prevent CHD.Agência financiadora: Fundação para a Ciência e a Tecnologia (FCT) Comissão de Coordenação e Desenvolvimento Regional do Algarve (CCDR Algarve) ALG-01-0145-FEDER-28044; DFG 568/17-2 Algarve Biomedical Center (ABC) Municipio de Louléinfo:eu-repo/semantics/publishedVersio

    Peripheral blood gene expression profiles in COPD subjects

    Get PDF
    To identify non-invasive gene expression markers for chronic obstructive pulmonary disease (COPD), we performed genome-wide expression profiling of peripheral blood samples from 12 subjects with significant airflow obstruction and an equal number of non-obstructed controls. RNA was isolated from Peripheral Blood Mononuclear Cells (PBMCs) and gene expression was assessed using Affymetrix U133 Plus 2.0 arrays.Tests for gene expression changes that discriminate between COPD cases (FEV1 80% predicted, FEV1/FVC > 0.7) were performed using Significance Analysis of Microarrays (SAM) and Bayesian Analysis of Differential Gene Expression (BADGE). Using either test at high stringency (SAM median FDR = 0 or BADGE p < 0.01) we identified differential expression for 45 known genes. Correlation of gene expression with lung function measurements (FEV1 & FEV1/FVC), using both Pearson and Spearman correlation coefficients (p < 0.05), identified a set of 86 genes. A total of 16 markers showed evidence of significant correlation (p < 0.05) with quantitative traits and differential expression between cases and controls. We further compared our peripheral gene expression markers with those we previously identified from lung tissue of the same cohort. Two genes, RP9and NAPE-PLD, were identified as decreased in COPD cases compared to controls in both lung tissue and blood. These results contribute to our understanding of gene expression changes in the peripheral blood of patients with COPD and may provide insight into potential mechanisms involved in the disease. © 2011 Bhattacharya et al; licensee BioMed Central Ltd

    Designing Nanoconjugates to Effectively Target Pancreatic Cancer Cells In Vitro and In Vivo

    Get PDF
    Pancreatic cancer is the fourth leading cause of cancer related deaths in America. Monoclonal antibodies are a viable treatment option for inhibiting cancer growth. Tumor specific drug delivery could be achieved utilizing these monoclonal antibodies as targeting agents. This type of designer therapeutic is evolving and with the use of gold nanoparticles it is a promising approach to selectively deliver chemotherapeutics to malignant cells. Gold nanoparticles (GNPs) are showing extreme promise in current medicinal research. GNPs have been shown to non-invasively kill tumor cells by hyperthermia using radiofrequency. They have also been implemented as early detection agents due to their unique X-ray contrast properties; success was revealed with clear delineation of blood capillaries in a preclinical model by CT (computer tomography). The fundamental parameters for intelligent design of nanoconjugates are on the forefront. The goal of this study is to define the necessary design parameters to successfully target pancreatic cancer cells.The nanoconjugates described in this study were characterized with various physico-chemical techniques. We demonstrate that the number of cetuximab molecules (targeting agent) on a GNP, the hydrodynamic size of the nanoconjugates, available reactive surface area and the ability of the nanoconjugates to sequester EGFR (epidermal growth factor receptor), all play critical roles in effectively targeting tumor cells in vitro and in vivo in an orthotopic model of pancreatic cancer.Our results suggest the specific targeting of tumor cells depends on a number of crucial components 1) targeting agent to nanoparticle ratio 2) availability of reactive surface area on the nanoparticle 3) ability of the nanoconjugate to bind the target and 4) hydrodynamic diameter of the nanoconjugate. We believe this study will help define the design parameters for formulating better strategies for specifically targeting tumors with nanoparticle conjugates

    MicroRNAs targeting oncogenes are down-regulated in pancreatic malignant transformation from benign tumors

    Get PDF
    BACKGROUND MicroRNA (miRNA) expression profiles have been described in pancreatic ductal adenocarcinoma (PDAC), but these have not been compared with pre-malignant pancreatic tumors. We wished to compare the miRNA expression signatures in pancreatic benign cystic tumors (BCT) of low and high malignant potential with PDAC, in order to identify miRNAs deregulated during PDAC development. The mechanistic consequences of miRNA dysregulation were further evaluated. METHODS Tissue samples were obtained at a tertiary pancreatic unit from individuals with BCT and PDAC. MiRNA profiling was performed using a custom microarray and results were validated using RT-qPCR prior to evaluation of miRNA targets. RESULTS Widespread miRNA down-regulation was observed in PDAC compared to low malignant potential BCT. We show that amongst those miRNAs down-regulated, miR-16, miR-126 and let-7d regulate known PDAC oncogenes (targeting BCL2, CRK and KRAS respectively). Notably, miR-126 also directly targets the KRAS transcript at a "seedless" binding site within its 3'UTR. In clinical specimens, miR-126 was strongly down-regulated in PDAC tissues, with an associated elevation in KRAS and CRK proteins. Furthermore, miR-21, a known oncogenic miRNA in pancreatic and other cancers, was not elevated in PDAC compared to serous microcystic adenoma (SMCA), but in both groups it was up-regulated compared to normal pancreas, implicating early up-regulation during malignant change. CONCLUSIONS Expression profiling revealed 21 miRNAs down-regulated in PDAC compared to SMCA, the most benign lesion that rarely progresses to invasive carcinoma. It appears that miR-21 up-regulation is an early event in the transformation from normal pancreatic tissue. MiRNA expression has the potential to distinguish PDAC from normal pancreas and BCT. Mechanistically the down-regulation of miR-16, miR-126 and let-7d promotes PDAC transformation by post-transcriptional up-regulation of crucial PDAC oncogenes. We show that miR-126 is able to directly target KRAS; re-expression has the potential as a therapeutic strategy against PDAC and other KRAS-driven cancers

    Cost-Effectiveness Analysis of Combination Therapies for Visceral Leishmaniasis in the Indian Subcontinent

    Get PDF
    Visceral leishmaniasis (VL) is a serious health problem in the Indian subcontinent affecting the rural poor. It has a significant economic impact on concerned households. The development of drug resistance is a major problem and threatens control efforts under the VL elimination initiative. With an unprecedented choice of antileishmanial drugs (but no newer compound in clinical development), policies that protect these drugs against the emergence of resistance are required. A possible strategy that has been successfully used for malaria and tuberculosis is the use of combination therapies. This study is the first comprehensive assessment of the cost-effectiveness of all possible mono- and combination therapies for the treatment of visceral leishmaniasis in the Indian subcontinent. The analysis was done from the societal perspective, including both health provider and household costs. The present work shows that combination treatments are a cost-effective alternative to current monotherapy for VL. Given their expected impact on emergence of drug resistance, the use of combination therapy should be considered in the context of the VL elimination programme in the Indian subcontinent
    corecore