49 research outputs found

    Identifying divergent design thinking through the observable behavior of service design novices

    Get PDF
    © 2018, Springer Nature B.V. Design thinking holds the key to innovation processes, but is often difficult to detect because of its implicit nature. We undertook a study of novice designers engaged in team-based design exercises in order to explore the correlation between design thinking and designers’ physical (observable) behavior and to identify new, objective, design thinking identification methods. Our study addresses the topic by using data collection method of “think aloud” and data analysis method of “protocol analysis” along with the unconstrained concept generation environment. Collected data from the participants without service design experience were analyzed by open and selective coding. Through the research, we found correlations between physical activity and divergent thinking, and also identified physical behaviors that predict a designer’s transition to divergent thinking. We conclude that there are significant relations between designers’ design thinking and the behavioral features of their body and face. This approach opens possible new ways to undertake design process research and also design capability evaluation

    Novel insights into the aetiology and pathophysiology of increased airway inflammation during COPD exacerbations

    Get PDF
    Airway inflammation increases during acute exacerbations of COPD. Extrinsic factors, such as airway infections, increased air pollution, and intrinsic factors, such as increased oxidative stress and altered immunity may contribute to this increase. The evidence for this and the potential mechanisms by which various aetiological agents increase inflammation during COPD exacerbations is reviewed. The pathophysiologic consequences of increased airway inflammation during COPD exacerbations are also discussed. This review aims to establish a cause and effect relationship between etiological factors of increased airway inflammation and COPD exacerbations based on recently published data. Although it can be speculated that reducing inflammation may prevent and/or treat COPD exacerbations, the existing anti-inflammatory treatments are modestly effective

    Functional tissue engineering of ligament healing

    Get PDF
    Ligaments and tendons are dense connective tissues that are important in transmitting forces and facilitate joint articulation in the musculoskeletal system. Their injury frequency is high especially for those that are functional important, like the anterior cruciate ligament (ACL) and medial collateral ligament (MCL) of the knee as well as the glenohumeral ligaments and the rotator cuff tendons of the shoulder. Because the healing responses are different in these ligaments and tendons after injury, the consequences and treatments are tissue- and site-specific. In this review, we will elaborate on the injuries of the knee ligaments as well as using functional tissue engineering (FTE) approaches to improve their healing. Specifically, the ACL of knee has limited capability to heal, and results of non-surgical management of its midsubstance rupture have been poor. Consequently, surgical reconstruction of the ACL is regularly performed to gain knee stability. However, the long-term results are not satisfactory besides the numerous complications accompanied with the surgeries. With the rapid development of FTE, there is a renewed interest in revisiting ACL healing. Approaches such as using growth factors, stem cells and scaffolds have been widely investigated. In this article, the biology of normal and healing ligaments is first reviewed, followed by a discussion on the issues related to the treatment of ACL injuries. Afterwards, current promising FTE methods are presented for the treatment of ligament injuries, including the use of growth factors, gene delivery, and cell therapy with a particular emphasis on the use of ECM bioscaffolds. The challenging areas are listed in the future direction that suggests where collection of energy could be placed in order to restore the injured ligaments and tendons structurally and functionally

    Population Genomics of Parallel Adaptation in Threespine Stickleback using Sequenced RAD Tags

    Get PDF
    Next-generation sequencing technology provides novel opportunities for gathering genome-scale sequence data in natural populations, laying the empirical foundation for the evolving field of population genomics. Here we conducted a genome scan of nucleotide diversity and differentiation in natural populations of threespine stickleback (Gasterosteus aculeatus). We used Illumina-sequenced RAD tags to identify and type over 45,000 single nucleotide polymorphisms (SNPs) in each of 100 individuals from two oceanic and three freshwater populations. Overall estimates of genetic diversity and differentiation among populations confirm the biogeographic hypothesis that large panmictic oceanic populations have repeatedly given rise to phenotypically divergent freshwater populations. Genomic regions exhibiting signatures of both balancing and divergent selection were remarkably consistent across multiple, independently derived populations, indicating that replicate parallel phenotypic evolution in stickleback may be occurring through extensive, parallel genetic evolution at a genome-wide scale. Some of these genomic regions co-localize with previously identified QTL for stickleback phenotypic variation identified using laboratory mapping crosses. In addition, we have identified several novel regions showing parallel differentiation across independent populations. Annotation of these regions revealed numerous genes that are candidates for stickleback phenotypic evolution and will form the basis of future genetic analyses in this and other organisms. This study represents the first high-density SNP–based genome scan of genetic diversity and differentiation for populations of threespine stickleback in the wild. These data illustrate the complementary nature of laboratory crosses and population genomic scans by confirming the adaptive significance of previously identified genomic regions, elucidating the particular evolutionary and demographic history of such regions in natural populations, and identifying new genomic regions and candidate genes of evolutionary significance

    Role of biomechanics in the understanding of normal, injured, and healing ligaments and tendons

    Get PDF
    Ligaments and tendons are soft connective tissues which serve essential roles for biomechanical function of the musculoskeletal system by stabilizing and guiding the motion of diarthrodial joints. Nevertheless, these tissues are frequently injured due to repetition and overuse as well as quick cutting motions that involve acceleration and deceleration. These injuries often upset this balance between mobility and stability of the joint which causes damage to other soft tissues manifested as pain and other morbidity, such as osteoarthritis

    Magnetic resonance imaging findings in primary lymphoma of the liver: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Primary lymphoma of the liver is an extremely rare finding, with the few such cases reported in the literature to date describing indeterminate imaging findings, being focused more on computed tomography. To the best of our knowledge, there is no prior report describing magnetic resonance imaging scan findings with such a lesion. In the case reported here, magnetic resonance imaging gave us the opportunity to ascertain the correct diagnosis, confirmed by histopathology, thus avoiding unnecessary surgery or other treatments. Although this condition is rare, knowledge of magnetic resonance imaging findings will be invaluable for radiologists and other medical subspecialties that may face such cases in the future in helping to provide adequate management for affected patients.</p> <p>Case presentation</p> <p>A focal lesion was incidentally detected by ultrasound in a 75-year-old asymptomatic Albanian man being treated for benign hypertrophy of prostate. Chest and abdomen computed tomography scans did not reveal any abnormal findings besides a solid focal lesion on the right lobe of the liver and a mild homogenous enlargement of the prostate gland. Subsequently, magnetic resonance imaging of the upper abdomen was performed for better characterization of this lesion. Our patient was free of symptoms and his laboratory test results were normal.</p> <p>Conclusions</p> <p>The magnetic resonance imaging scan results showed some distinctive features that helped us to make the correct diagnosis, and were thus very important in helping us provide the correct treatment for our patient.</p

    Lamellipodin promotes invasive 3D cancer cell migration via regulated interactions with Ena/VASP and SCAR/WAVE

    Get PDF
    Cancer invasion is a hallmark of metastasis. The mesenchymal mode of cancer cell invasion is mediated by elongated membrane protrusions driven by the assembly of branched F-actin networks. How deregulation of actin regulators promotes cancer cell invasion is still enigmatic. We report that increased expression and membrane localization of the actin regulator Lamellipodin correlate with reduced metastasis-free survival and poor prognosis in breast cancer patients. In agreement, we find that Lamellipodin depletion reduced lung metastasis in an orthotopic mouse breast cancer model. Invasive 3D cancer cell migration as well as invadopodia formation and matrix degradation was impaired upon Lamellipodin depletion. Mechanistically, we show that Lamellipodin promotes invasive 3D cancer cell migration via both actin-elongating Ena/VASP proteins and the Scar/WAVE complex, which stimulates actin branching. In contrast, Lamellipodin interaction with Scar/WAVE but not with Ena/VASP is required for random 2D cell migration. We identified a phosphorylation-dependent mechanism that regulates selective recruitment of these effectors to Lamellipodin: Abl-mediated Lamellipodin phosphorylation promotes its association with both Scar/WAVE and Ena/VASP, whereas Src-dependent phosphorylation enhances binding to Scar/WAVE but not to Ena/VASP. Through these selective, regulated interactions Lamellipodin mediates directional sensing of epidermal growth factor (EGF) gradients and invasive 3D migration of breast cancer cells. Our findings imply that increased Lamellipodin levels enhance Ena/VASP and Scar/WAVE activities at the plasma membrane to promote 3D invasion and metastasis.Virginia and D.K. Ludwig Fund for Cancer Research (Postdoctoral fellowship)King's College London (Overseas Research PhD Studentship (KORS))National Cancer Institute (U.S.) (U54-CA112967)National Cancer Institute (U.S.) (U54-CA163109)Ludwig Center for Molecular Oncology at MITDavid H. Koch Institute for Integrative Cancer Research at MIT (Support Grant P30-CA14051)National Cancer Institute (U.S.) (Koch Institute Support Grant P30-CA14051)Biotechnology and Biological Sciences Research Council (Great Britain) (BB/F011431/1)Biotechnology and Biological Sciences Research Council (Great Britain) (BB/J000590/1)Biotechnology and Biological Sciences Research Council (Great Britain) (BB/N000226/1)Wellcome Trust (London, England) (082907/Z/07/Z
    corecore