10 research outputs found
Impact of FORMOSAT-3/COSMIC GPS radio occultation and dropwindsonde data on regional model predictions during the 2007 Mei-yu season
Gender diversity policies in universities: a multi-perspective framework of policy measures
The extratropical transition of tropical cyclones. Part I: Cyclone evolution and direct impacts
Extratropical transition (ET) is the process by which a tropical cyclone, upon encountering a baroclinic environment and reduced sea surface temperature at higher latitudes, transforms into an extratropical cyclone. This process is influenced by, and influences, phenomena from the tropics to the midlatitudes and from themeso- to the planetary scales to extents that vary between individual events. Motivated in part by recent high-impact and/or extensively observed events such as NorthAtlanticHurricane Sandy in 2012 and western North Pacific Typhoon Sinlaku in 2008, this review details advances in understanding and predicting ET since the publication of an earlier review in 2003. Methods for diagnosing ETin reanalysis, observational, andmodel-forecast datasets are discussed.New climatologies for the eastern North Pacific and southwest Indian Oceans are presented alongside updates to western North Pacific and North Atlantic Ocean climatologies. Advances in understanding and, in some cases, modeling the direct impacts of ET-related wind, waves, and precipitation are noted. Improved understanding of structural evolution throughout the transformation stage of ET fostered in large part by novel aircraft observations collected in several recent ET events is highlighted. Predictive skill for operational and numerical model ET-related forecasts is discussed along with environmental factors influencing posttransition cyclone structure and evolution. Operational ET forecast and analysis practices and challenges are detailed. In particular, somechallenges of effective hazard communication for the evolving threats posed by a tropical cyclone during and after transition are introduced. This review concludes with recommendations for future work to further improve understanding, forecasts, and hazard communication
Impact of period and timescale of FDDA analysis nudging on the numerical simulation of tropical cyclones in the Bay of Bengal
Identifying Typhoon Targeted Observations Sensitive Areas Using the Gradient Definition Based Method
Assessing links between upper atmospheric vorticity patterns and directional changes in hurricane tracks
Assimilation of Streamflow Observations
Streamflow is arguably the most important predictor in operational hydrologic forecasting and water resources management. Assimilation of streamflow observations into hydrologic models has received growing attention in recent decades as a cost-effective means to improve prediction accuracy. Whereas the methods used for streamflow data assimilation (DA) originated and were popularized in atmospheric and ocean sciences, the nature of streamflow DA is significantly different from that of atmospheric or oceanic DA. Compared to the atmospheric processes modeled in weather forecasting, the hydrologic processes for surface and groundwater flow operate over a much wider range of time scales. Also, most hydrologic systems are severely under-observed. The purpose of this chapter is to provide a review on streamflow measurements and associated uncertainty and to share the latest advances, experiences gained, and science issues and challenges in streamflow DA. Toward this end, we discuss the following aspects of streamflow observations and assimilation methods: (1) measurement methods and uncertainty of streamflow observations, (2) streamflow assimilation applications, and (3) benefits and challenges streamflow DA with regard to large-scale DA, multi-data assimilation, and dealing with timing errors
