871 research outputs found
Anyonic Realization of the Quantum Affine Lie Algebras
We give a realization of the quantum affine Lie algebras \uqa and \uqc in
terms of anyons defined on a one-dimensional chain (or on a two-dimensional
lattice), the deformation parameter being related to the statistical
parameter of the anyons by . In the limit of the
deformation parameter going to one we recover the Feingold-Frenkel fermionic
construction of undeformed affine Lie algebras.Comment: 8p, LaTeX, subeqn.sty. Also available at
http://lapphp0.in2p3.fr/preplapp/psth/anyon_ac.ps.g
The extended conformal theory of Luttinger systems
We describe the recently introduced method of algebraic bosonization of the
-dimensional Luttinger systems by discussing in detail the specific case
of the Calogero-Sutherland model, and mentioning the hard-core Bose gas. We
also compare our findings with the exact Bethe Ansatz results.Comment: 9 pages, plain Latex file, ,based on a talk given by S. Sciuto at the
II International Sakharov Conference on Physics, Moscow, Russia, 20-24 May 9
Electrical and ultraviolet characterization of 4H-SiC Schottky photodiodes
Fabrication and electrical and optical characterization of 4H-SiC Schottky UV photodetectors with nickel silicide interdigitated contacts is reported. Dark capacitance and current measurements as a function of applied voltage over the temperature range 20 °C â 120 °C are presented. The results show consistent performance among devices. Their leakage current density, at the highest investigated temperature (120 °C), is in the range of nA/cm2 at high internal electric field. Properties such as barrier height and ideality factor are also computed as a function of temperature. The responsivities of the diodes as functions of applied voltage were measured using a UV spectrophotometer in the wavelength range 200 nm - 380 nm and compared with theoretically calculated values. The devices had a mean peak responsivity of 0.093 A/W at 270 nm and â15 V reverse bias
Use of balloon catheter dilation vs. traditional endoscopic sinus surgery in management of light and severe chronic rhinosinusitis of the frontal sinus: a multicenter prospective randomized study
OBJECTIVE: Chronic rhinosinusitis (CRS) of the frontal sinus is a complex pathological condition and many surgical techniques were described to treat this area endoscopically, like traditional endoscopic sinus surgery (ESS) and balloon catheter dilation (BCD).
PATIENTS AND METHODS: We designed a multicenter prospective randomized study to assess the validity and safety of BCD vs. ESS in symptomatological chronic rhinosinusitis of the frontal sinus enrolling a population of 102 adult patients (64 men and 38 women; overall 148 frontal sinuses studied) with non-polypoid CRS. For a better evaluation of the disease, in our study we decided to analyze both radiological (Lund-McKay CT scoring modified by Zinreich) and symptomatological results (SNOT-20 questionnaire). We divided the population affected in two groups, one with light/mild frontal CRS and the other with moderate/severe frontal CRS, basing on radiological findings at Lund-MacKay modified by Zinreich score. Every group was divided in two subgroups, in one we used BCD and in the other we used traditional ESS.
RESULTS: The current literature does not support the suggestion that indications for BCD and ESS are identical, and additional research is needed to determine the role for BCD in specific patient populations. The results showed a not statistically significative difference between BCD and conventional ESS of the frontal sinus in patients with light/mild CRS and in patients with moderate/severe CRS at Lund-Mackay modified by Zinreich score. The same not statistically significative difference was observed comparing the results of SNOT-20 questionnaire in the group of light/mild frontal chronic rhinosinusitis. However, we noticed a statistically significant better outcome of SNOT-20 score in patients with moderate/severe chronic rhinosinusitis that underwent BCD of frontal sinus compared to ESS.
CONCLUSIONS: BCD and ESS are two alternative weapons in the baggage of every endoscopic surgeon, even because they present similar outcomes, safeness and effectiveness both in light/mild and moderate/severe chronic rhinosinusitis of the frontal sinus. An interesting result of our study was the statistically significant better outcome of SNOT-20 score in patients that underwent BCD of frontal sinus for a moderate/severe CRS, compared to those that underwent a traditional ESS
The extended conformal theory of the Calogero-Sutherland model
We describe the recently introduced method of Algebraic Bosonization of
(1+1)-dimensional fermionic systems by discussing the specific case of the
Calogero-Sutherland model. A comparison with the Bethe Ansatz results is also
presented.Comment: 12 pages, plain LaTeX, no figures; To appear in the proceedings of
the IV Meeting "Common Trends in Condensed Matter and High Energy Physics",
Chia Laguna, Cagliari, Italy, 3-10 Sep. 199
Complex sine-Gordon-2: a new algorithm for multivortex solutions on the plane
We present a new vorticity-raising transformation for the second integrable
complexification of the sine-Gordon equation on the plane. The new
transformation is a product of four Schlesinger maps of the Painlev\'{e}-V to
itself, and allows a more efficient construction of the -vortex solution
than the previously reported transformation comprising a product of maps.Comment: Part of a talk given at a conference on "Nonlinear Physics. Theory
and Experiment", Gallipoli (Lecce), June-July 2004. To appear in a topical
issue of "Theoretical and Mathematical Physics". 7 pages, 1 figur
Performance of Smart Materials-Based Instrumentation for Force Measurements in Biomedical Applications: A Methodological Review
The introduction of smart materials will become increasingly relevant as biomedical technologies progress. Smart materials sense and respond to external stimuli (e.g., chemical, electrical, mechanical, or magnetic signals) or environmental circumstances (e.g., temperature, illuminance, acidity, or humidity), and provide versatile platforms for studying various biological processes because of the numerous analogies between smart materials and biological systems. Several applications based on this class of materials are being developed using different sensing principles and fabrication technologies. In the biomedical field, force sensors are used to characterize tissues and cells, as feedback to develop smart surgical instruments in order to carry out minimally invasive surgery. In this regard, the present work provides an overview of the recent scientific literature regarding the developments in force measurement methods for biomedical applications involving smart materials. In particular, performance evaluation of the main methods proposed in the literature is reviewed on the basis of their results and applications, focusing on their metrological characteristics, such as measuring range, linearity, and measurement accuracy. Classification of smart materials-based force measurement methods is proposed according to their potential applications, highlighting advantages and disadvantages
- âŠ