814 research outputs found

    Homogeneous Gold Catalysis through Relativistic Effects: Addition of Water to Propyne

    Full text link
    In the catalytic addition of water to propyne the Au(III) catalyst is not stable under non-relativistic conditions and dissociates into a Au(I) compound and Cl2. This implies that one link in the chain of events in the catalytic cycle is broken and relativity may well be seen as the reason why Au(III) compounds are effective catalysts.Comment: 12 pages, 3 figures, 1 tabl

    Material Size Dependence on Fundamental Constants

    Get PDF
    Precise experimental setups for detection of variation of fundamental constants, scalar dark matter, or gravitational waves, such as laser interferometers, optical cavities and resonant-mass detectors, are directly linked to measuring changes in material size. Here we present calculated and experiment-derived estimates for both α\alpha- and μ\mu-dependence of lattice constants and bond lengths of selected solid-state materials and diatomic molecules that are needed for interpretation of such experiments

    Large Vibrationally Induced Parity Violation Effects in CHDBrI+^+ - A Promising Candidate for Future Experiments

    Full text link
    The isotopically chiral molecular ion CHDBrI+^+ is identified as an exceptionally promising candidate for the detection of parity violation in vibrational transitions. The largest predicted parity-violating frequency shift reaches 1.8 Hz for the hydrogen wagging mode which has a sub-Hz natural line width and its vibrational frequency auspiciously lies in the available laser range. In stark contrast to this result, the parent neutral molecule is two orders of magnitude less sensitive to parity violation. The origin of this effect is analyzed and explained. Precision vibrational spectroscopy of CHDBrI+^+ is feasible as it is amenable to preparation at internally low temperatures and resistant to predissociation, promoting long interrogation times (Landau et al.). The intersection of these properties in this molecular ion places the first observation of parity violation in chiral molecules within reach

    Determining the direction of prediction of the association between parasympathetic dysregulation and exhaustion symptoms

    Full text link
    Stress-related exhaustion symptoms have a high prevalence which is only likely to increase further in the near future. Understanding the physiological underpinnings of exhaustion has important implications for accurate diagnosis and the development of effective prevention and intervention programs. Given its integrative role in stress-regulation, the parasympathetic branch of the autonomic nervous systems has been a valid starting point in the exploration of the physiological mechanisms behind exhaustion. The aim of the present study was to examine the directionality and specificity of the association between exhaustion symptoms and vagally-mediated heart rate variability (vmHRV), a relatively pure measure of parasympathetic tone. Exhaustion symptoms and vmHRV were measured at four annually assessment waves (2015–2018) of the Dresden Burnout Study. A total sample of N = 378 participants who attended at least two of the four annual biomarker measurements were included in the present analyses. Cross-lagged multi-level panel modelling adjusting for various covariates (e.g., age, sex, BMI) revealed that vmHRV was meaningfully predictive of exhaustion symptoms and not vice versa. In addition, these effects were specific for exhaustion symptoms as no effect was shown for the other burnout sub-dimensions, or for depressive symptoms. Our findings indicate a clear link between exhaustion symptoms and vmHRV which may hold great potential for both enhancing the diagnosis and treatment of exhaustion symptoms

    Comparison of the atmosphere above the South Pole, Dome C and Dome A: first attempt

    Full text link
    The atmospheric properties above three sites (Dome C, Dome A and the South Pole) on the Internal Antarctic Plateau are investigated for astronomical applications using the monthly median of the analyses from ECMWF (the European Centre for Medium-Range Weather Forecasts). Radiosoundings extended on a yearly time scale at the South Pole and Dome C are used to quantify the reliability of the ECMWF analyses in the free atmosphere as well as in the boundary and surface layers, and to characterize the median wind speed in the first 100 m above the two sites. Thermodynamic instability properties in the free atmosphere above the three sites are quantified with monthly median values of the Richardson number. We find that the probability to trigger thermodynamic instabilities above 100 m is smaller on the Internal Antarctic Plateau than on mid-latitude sites. In spite of the generally more stable atmospheric conditions of the Antarctic sites compared to mid-latitude sites, Dome C shows worse thermodynamic instability conditions than those predicted above the South Pole and Dome A above 100 m. A rank of the Antarctic sites done with respect to the strength of the wind speed in the free atmosphere (ECMWF analyses) as well as the wind shear in the surface layer (radiosoundings) is presented.Comment: Accepted for publishing in MNRAS. 14 pages, 10 figures. The definitive version is available at http://www.blackwell-synergy.co

    Calculation of the positron bound state with the copper atom

    Get PDF
    A new relativistic method for calculation of positron binding to atoms is presented. The method combines a configuration interaction treatment of the valence electron and the positron with a many-body perturbation theory description of their interaction with the atomic core. We apply this method to positron binding by the copper atom and obtain the binding energy of 170 meV (+ - 10%). To check the accuracy of the method we use a similar approach to calculate the negative copper ion. The calculated electron affinity is 1.218 eV, in good agreement with the experimental value of 1.236 eV. The problem of convergence of positron-atom bound state calculations is investigated, and means to improve it are discussed. The relativistic character of the method and its satisfactory convergence make it a suitable tool for heavier atoms.Comment: 15 pages, 5 figures, RevTe

    Excited States of Ladder-type Poly-p-phenylene Oligomers

    Full text link
    Ground state properties and excited states of ladder-type paraphenylene oligomers are calculated applying semiempirical methods for up to eleven phenylene rings. The results are in qualitative agreement with experimental data. A new scheme to interpret the excited states is developed which reveals the excitonic nature of the excited states. The electron-hole pair of the S1-state has a mean distance of approximately 4 Angstroem.Comment: 24 pages, 21 figure
    corecore