9,168 research outputs found

    The reduction of the closest disentangled states

    Get PDF
    We study the closest disentangled state to a given entangled state in any system (multi-party with any dimension). We obtain the set of equations the closest disentangled state must satisfy, and show that its reduction is strongly related to the extremal condition of the local filtering on each party. Although the equations we obtain are not still tractable, we find some sufficient conditions for which the closest disentangled state has the same reduction as the given entangled state. Further, we suggest a prescription to obtain a tight upper bound of the relative entropy of entanglement in two-qubit systems.Comment: a crucial error was correcte

    Incoherent pion photoproduction on the deuteron in the first resonance region

    Get PDF
    Incoherent pion photoproduction on the deuteron is studied in the first resonance region. The unpolarized cross section, the beam asymmetry, and the vector and tensor target asymmetries are calculated in the framework of a diagrammatic approach. Pole diagrams and one-loop diagrams with NNNN scattering in the final state are taken into account. An elementary operator for pion photoproduction on the nucleon is taken in various on-shell forms and calculated using the SAID and MAID multipole analyses. Model dependence of the obtained results is discussed in some detail. A comparison with predictions of other works is given. Although a reasonable description of many available experimental data on the unpolarized total and differential cross sections and photon asymmetry has been achieved, in some cases a significant disagreement between the theory and experiment has been found. Invoking known information on the reactions γdπ0d\gamma d\to\pi^0 d and γdnp\gamma d\to np we predict the total photoabsorption cross section for deuterium. We find that our values strongly overestimate experimental data in the vicinity of the Δ\Delta peak.Comment: 22 pages, 23 figure

    Quantum Copying: Beyond the No-Cloning Theorem

    Get PDF
    We analyze to what extent it is possible to copy arbitrary states of a two-level quantum system. We show that there exists a "universal quantum copying machine", which approximately copies quantum mechanical states in such a way that the quality of its output does not depend on the input. We also examine a machine which combines a unitary transformation with a selective measurement to produce good copies of states in a neighborhood of a particular state. We discuss the problem of measurement of the output states.Comment: RevTex, 26 pages, to appear in Physical Review

    Robust single-parameter quantized charge pumping

    Full text link
    This paper investigates a scheme for quantized charge pumping based on single-parameter modulation. The device was realized in an AlGaAs-GaAs gated nanowire. We find a remarkable robustness of the quantized regime against variations in the driving signal, which increases with applied rf power. This feature together with its simple configuration makes this device a potential module for a scalable source of quantized current.Comment: Submitted to Appl. Phys. Let

    Observation of the Higgs Boson of strong interaction via Compton scattering by the nucleon

    Get PDF
    It is shown that the Quark-Level Linear σ\sigma Model (QLLσ\sigmaM) leads to a prediction for the diamagnetic term of the polarizabilities of the nucleon which is in excellent agreement with the experimental data. The bare mass of the σ\sigma meson is predicted to be mσ=666m_\sigma=666 MeV and the two-photon width Γ(σγγ)=(2.6±0.3)\Gamma(\sigma\to\gamma\gamma)=(2.6\pm 0.3) keV. It is argued that the mass predicted by the QLLσ\sigmaM corresponds to the γγσNN\gamma\gamma\to\sigma\to NN reaction, i.e. to a tt-channel pole of the γNNγ\gamma N\to N\gamma reaction. Large -angle Compton scattering experiments revealing effects of the σ\sigma meson in the differential cross section are discussed. Arguments are presented that these findings may be understood as an observation of the Higgs boson of strong interaction while being part of the constituent quark.Comment: 17 pages, 6 figure

    Cloud microphysical effects of turbulent mixing and entrainment

    Full text link
    Turbulent mixing and entrainment at the boundary of a cloud is studied by means of direct numerical simulations that couple the Eulerian description of the turbulent velocity and water vapor fields with a Lagrangian ensemble of cloud water droplets that can grow and shrink by condensation and evaporation, respectively. The focus is on detailed analysis of the relaxation process of the droplet ensemble during the entrainment of subsaturated air, in particular the dependence on turbulence time scales, droplet number density, initial droplet radius and particle inertia. We find that the droplet evolution during the entrainment process is captured best by a phase relaxation time that is based on the droplet number density with respect to the entire simulation domain and the initial droplet radius. Even under conditions favoring homogeneous mixing, the probability density function of supersaturation at droplet locations exhibits initially strong negative skewness, consistent with droplets near the cloud boundary being suddenly mixed into clear air, but rapidly approaches a narrower, symmetric shape. The droplet size distribution, which is initialized as perfectly monodisperse, broadens and also becomes somewhat negatively skewed. Particle inertia and gravitational settling lead to a more rapid initial evaporation, but ultimately only to slight depletion of both tails of the droplet size distribution. The Reynolds number dependence of the mixing process remained weak over the parameter range studied, most probably due to the fact that the inhomogeneous mixing regime could not be fully accessed when phase relaxation times based on global number density are considered.Comment: 17 pages, 10 Postscript figures (figures 3,4,6,7,8 and 10 are in reduced quality), to appear in Theoretical Computational Fluid Dynamic

    Single-parameter non-adiabatic quantized charge pumping

    Full text link
    Controlled charge pumping in an AlGaAs/GaAs gated nanowire by single-parameter modulation is studied experimentally and theoretically. Transfer of integral multiples of the elementary charge per modulation cycle is clearly demonstrated. A simple theoretical model shows that such a quantized current can be generated via loading and unloading of a dynamic quasi-bound state. It demonstrates that non-adiabatic blockade of unwanted tunnel events can obliterate the requirement of having at least two phase-shifted periodic signals to realize quantized pumping. The simple configuration without multiple pumping signals might find wide application in metrological experiments and quantum electronics.Comment: 4 pages, 4 figure

    Evolution of structure and local magnetic fields during crystallization of HITPERM glassy alloys studied by in situ diffraction and nuclear forward scattering of synchrotron radiation

    Get PDF
    Evolution of structure and local magnetic fields in Fe1 xCox 76Mo8Cu1B15 HITPERM metallic glass ribbons with various amounts of Co x 0, 0.25, 0.5 were studied in situ using diffraction and nuclear forward scattering of synchrotron radiation. It was found that crystallization for all three glasses proceeds in two stages. In the first stage, bcc Fe,Co nanocrystals are formed, while in the second stage additional crystalline phases evolve. For all three glasses, the crystallization temperatures at the wheel side were found to be lower than at the air side of the ribbon. The crystallization temperatures were found to decrease with increasing Co content. The lattice parameters of the bcc nanocrystals decrease up to about 550 C and then increase pointing to squeezing Mo atoms out of the nanograins or to interface effects between the nanocrystals and the glassy matrix. Nuclear forward scattering enabled separate evaluation of the contributions that stem from structurally different regions within the investigated samples including the newly formed nanocrystals and the residual amorphous matrix. Even minor Co content x 0.25 has a substantial effect not only upon the magnetic behaviour of the alloy but also upon its structure. Making use of hyperfine magnetic fields, it was possible to unveil structurally diverse positions of Fe atoms that reside in a nanocrystalline lattice with different number of Co nearest neighbour

    Nucleon polarizabilities in the perturbative chiral quark model

    Full text link
    The nucleon polarizabilities alpha(E) and beta(M) are studied in the context of the perturbative chiral quark model. We demonstrate that meson cloud effects are sufficient to explain the electric polarizability of nucleon. Contributions of excite quark states to the paramagnetic polarizability are dominant and cancel the diamagnetic polarizability arising from the chiral field. The obtained results are compared to data and other theoretical predictions.Comment: 25 pages, 18 figures, 2 table
    corecore