17,576 research outputs found

    Dosage Sensing, Threshold Responses, and Epigenetic Memory: A Systems Biology Perspective on Random X‐Chromosome Inactivation

    Full text link
    X‐chromosome inactivation ensures dosage compensation between the sexes in mammals by randomly choosing one out of the two X chromosomes in females for inactivation. This process imposes a plethora of questions: How do cells count their X chromosome number and ensure that exactly one stays active? How do they randomly choose one of two identical X chromosomes for inactivation? And how do they stably maintain this state of monoallelic expression? Here, different regulatory concepts and their plausibility are evaluated in the context of theoretical studies that have investigated threshold behavior, ultrasensitivity, and bistability through mathematical modeling. It is discussed how a twofold difference between a single and a double dose of X‐linked genes might be converted to an all‐or‐nothing response and how mutually exclusive expression can be initiated and maintained. Finally, candidate factors that might mediate the proposed regulatory principles are reviewed

    Correlated continuous-time random walks: combining scale-invariance with long-range memory for spatial and temporal dynamics

    Full text link
    Standard continuous time random walk (CTRW) models are renewal processes in the sense that at each jump a new, independent pair of jump length and waiting time are chosen. Globally, anomalous diffusion emerges through action of the generalized central limit theorem leading to scale-free forms of the jump length or waiting time distributions. Here we present a modified version of recently proposed correlated CTRW processes, where we incorporate a power-law correlated noise on the level of both jump length and waiting time dynamics. We obtain a very general stochastic model, that encompasses key features of several paradigmatic models of anomalous diffusion: discontinuous, scale-free displacements as in Levy flights, scale-free waiting times as in subdiffusive CTRWs, and the long-range temporal correlations of fractional Brownian motion (FBM). We derive the exact solutions for the single-time probability density functions and extract the scaling behaviours. Interestingly, we find that different combinations of the model parameters lead to indistinguishable shapes of the emerging probability density functions and identical scaling laws. Our model will be useful to describe recent experimental single particle tracking data, that feature a combination of CTRW and FBM properties.Comment: 25 pages, IOP style, 5 figure

    Universal behavior of the IMS domain formation in superconducting niobium

    Full text link
    In the intermediate mixed state (IMS) of type-II/1 superconductors, vortex lattice (VL) and Meissner state domains coexist due to a partially attractive vortex interaction. Using a neutron-based multiscale approach combined with magnetization measurements, we study the continuous decomposition of a homogeneous VL into increasingly dense domains in the IMS in bulk niobium samples of varying purity. We find a universal temperature dependence of the vortex spacing, closely related to the London penetration depth and independent of the external magnetic field. The rearrangement of vortices occurs even in the presence of a flux freezing transition, i.e. pronounced pinning, indicating a breakdown of pinning at the onset of the vortex attraction

    Quasi-one-dimensional anisotropic Heisenberg model in a transverse magnetic field

    Full text link
    The phase diagram of weakly coupled XXZXXZ chains in a transverse magnetic field is studied using the mean-field approximation for the interchain coupling and known exact results for an effective one-dimensional model. Results are applied to the quasi-one-dimensional antiferromagnet Cs2CoCl4Cs_{2}CoCl_{4} and the value of interchain interaction in this compound is estimated.Comment: 4 pages, 2 figure

    Time pressure and honesty in a deception game

    Get PDF
    Previous experiments have found mixed results on whether honesty is intuitive or requires deliberation. Here we add to this literature by building on prior work of Capraro (2017). We report a large study (N=1,389) manipulating time pressure vs time delay in a deception game. We find that, in this setting, people are more honest under time pressure, and that this result is not driven by confounds present in earlier work

    Density-matrix renormalization group study of pairing when electron-electron and electron-phonon interactions coexist: effect of the electronic band structure

    Full text link
    Density-matrix renormalization group is used to study the pairing when both of electron-electron and electron-phonon interactions are strong in the Holstein-Hubbard model at half-filling in a region intermediate between the adiabatic (Migdal's) and antiadiabatic limits. We have found: (i) the pairing correlation obtained for a one-dimensional system is nearly degenerate with the CDW correlation in a region where the phonon-induced attraction is comparable with the electron-electron repulsion, but (ii) pairing becomes dominant when we destroy the electron-hole symmetry in a trestle lattice. This provides an instance in which pairing can arise, in a lattice-structure dependent manner, from coexisting electron-electron and electron-phonon interactions.Comment: 4 pages, 3 figures; to appear in Phys. Rev. Let

    Viscosity and thermal conductivity effects at first-order phase transitions in heavy-ion collisions

    Full text link
    Effects of viscosity and thermal conductivity on the dynamics of first-order phase transitions are studied. The nuclear gas-liquid and hadron-quark transitions in heavy-ion collisions are considered. We demonstrate that at non-zero thermal conductivity, Îș≠0\kappa \neq 0, onset of spinodal instabilities occurs on an isothermal spinodal line, whereas for Îș=0\kappa =0 instabilities take place at lower temperatures, on an adiabatic spinodal.Comment: invited talk at 6th International Workshop on Critical Point and Onset of Deconfinment (CPOD2010), Dubna, August 22-28, 201

    Resonant Scattering and Recombination in CAL 87

    Get PDF
    The eclipsing supersoft X-ray binary CAL 87 has been observed with Chandra on August 13/14, 2001 for nearly 100 ksec, covering two full orbital cycles and three eclipses. The shape of the eclipse light curve derived from the zeroth-order photons indicates that the size of the X-ray emission region is about 1.5 solar radii. The ACIS/LETG spectrum is completely dominated by emission lines without any noticeable continuum. The brightest emission lines are significantly redshifted and double-peaked, suggestive of emanating in a 2000 km/s wind. We model the X-ray spectrum by a mixture of recombination and resonant scattering. This allows us to deduce the temperature and luminosity of the ionizing source to be kT = 50-100 eV and L_X = 5E37 erg/s.Comment: To appear in Proceedings of IAU Coll. 194 "Compact binaries in the Galaxy and beyond" (Rev. Mex. A&A Conf. Series), eds. G. Tovmassian and E. Sio
    • 

    corecore