13,618 research outputs found

    Optimal Control for Generating Quantum Gates in Open Dissipative Systems

    Full text link
    Optimal control methods for implementing quantum modules with least amount of relaxative loss are devised to give best approximations to unitary gates under relaxation. The potential gain by optimal control using relaxation parameters against time-optimal control is explored and exemplified in numerical and in algebraic terms: it is the method of choice to govern quantum systems within subspaces of weak relaxation whenever the drift Hamiltonian would otherwise drive the system through fast decaying modes. In a standard model system generalising decoherence-free subspaces to more realistic scenarios, openGRAPE-derived controls realise a CNOT with fidelities beyond 95% instead of at most 15% for a standard Trotter expansion. As additional benefit it requires control fields orders of magnitude lower than the bang-bang decouplings in the latter.Comment: largely expanded version, superseedes v1: 10 pages, 5 figure

    Regular Incidence Complexes, Polytopes, and C-Groups

    Full text link
    Regular incidence complexes are combinatorial incidence structures generalizing regular convex polytopes, regular complex polytopes, various types of incidence geometries, and many other highly symmetric objects. The special case of abstract regular polytopes has been well-studied. The paper describes the combinatorial structure of a regular incidence complex in terms of a system of distinguished generating subgroups of its automorphism group or a flag-transitive subgroup. Then the groups admitting a flag-transitive action on an incidence complex are characterized as generalized string C-groups. Further, extensions of regular incidence complexes are studied, and certain incidence complexes particularly close to abstract polytopes, called abstract polytope complexes, are investigated.Comment: 24 pages; to appear in "Discrete Geometry and Symmetry", M. Conder, A. Deza, and A. Ivic Weiss (eds), Springe

    Nonlinear field effects in quadrupole mass filters

    Full text link
    The performance of a quadrupole mass filter (QMF) generally degrades when using electrodes of circular cross section in place of mathematical ideal hyperbolic electrodes. The circular cross section of electrodes produces nonlinear resonances resulting in distortion and peak splitting in mass spectra. In addition, resonances reduce the actual working cross section, resulting in limited ion yield. In this article we study nonlinear resonances and intensities of resonance lines passing through the tip of the stability diagram of the QMF. We have found that balancing of multipole terms, rather than eliminating individual multipole terms, improves the sensitivity of the QMF considerably. The theory for assessing intensities of nonlinear resonances is presented in detail along with rescaling laws to adjust current QMF parameter settings. A general formula is presented from which the location and intensity of nonlinear can be derived, which then may be used for the design of special purpose QMFs

    Electron spin resonance on a 2-dimensional electron gas in a single AlAs quantum well

    Full text link
    Direct electron spin resonance (ESR) on a high mobility two dimensional electron gas in a single AlAs quantum well reveals an electronic gg-factor of 1.991 at 9.35 GHz and 1.989 at 34 GHz with a minimum linewidth of 7 Gauss. The ESR amplitude and its temperature dependence suggest that the signal originates from the effective magnetic field caused by the spin orbit-interaction and a modulation of the electron wavevector caused by the microwave electric field. This contrasts markedly to conventional ESR that detects through the microwave magnetic field.Comment: 4 pages, 4 figure

    Uncovering Bugs in Distributed Storage Systems during Testing (not in Production!)

    Get PDF
    Testing distributed systems is challenging due to multiple sources of nondeterminism. Conventional testing techniques, such as unit, integration and stress testing, are ineffective in preventing serious but subtle bugs from reaching production. Formal techniques, such as TLA+, can only verify high-level specifications of systems at the level of logic-based models, and fall short of checking the actual executable code. In this paper, we present a new methodology for testing distributed systems. Our approach applies advanced systematic testing techniques to thoroughly check that the executable code adheres to its high-level specifications, which significantly improves coverage of important system behaviors. Our methodology has been applied to three distributed storage systems in the Microsoft Azure cloud computing platform. In the process, numerous bugs were identified, reproduced, confirmed and fixed. These bugs required a subtle combination of concurrency and failures, making them extremely difficult to find with conventional testing techniques. An important advantage of our approach is that a bug is uncovered in a small setting and witnessed by a full system trace, which dramatically increases the productivity of debugging

    Polarimetric Evidence of Non-Spherical Winds

    Get PDF
    Polarization observations yield otherwise unobtainable information about the geometrical structure of unresolved objects. In this talk we review the evidences for non-spherically symmetric structures around Luminous Hot Stars from polarimetry and what we can learn with this technique. Polarimetry has added a new dimension to the study of the envelopes of Luminous Blue Variables, Wolf-Rayet stars and B[e] stars, all of which are discussed in some detail.Comment: 8 pages, 2 encapsulated Postscript figures, uses lamuphys.sty. Invited review to appear in IAU Coll. 169, Variable and Non-Spherical Stellar Winds in Luminous Hot Stars, eds. B. Wolf, A.Fullerton and O. Stahl (Springer

    The CLIC Programme: Towards a Staged e+e- Linear Collider Exploring the Terascale : CLIC Conceptual Design Report

    Full text link
    This report describes the exploration of fundamental questions in particle physics at the energy frontier with a future TeV-scale e+e- linear collider based on the Compact Linear Collider (CLIC) two-beam acceleration technology. A high-luminosity high-energy e+e- collider allows for the exploration of Standard Model physics, such as precise measurements of the Higgs, top and gauge sectors, as well as for a multitude of searches for New Physics, either through direct discovery or indirectly, via high-precision observables. Given the current state of knowledge, following the observation of a 125 GeV Higgs-like particle at the LHC, and pending further LHC results at 8 TeV and 14 TeV, a linear e+e- collider built and operated in centre-of-mass energy stages from a few-hundred GeV up to a few TeV will be an ideal physics exploration tool, complementing the LHC. In this document, an overview of the physics potential of CLIC is given. Two example scenarios are presented for a CLIC accelerator built in three main stages of 500 GeV, 1.4 (1.5) TeV, and 3 TeV, together with operating schemes that will make full use of the machine capacity to explore the physics. The accelerator design, construction, and performance are presented, as well as the layout and performance of the experiments. The proposed staging example is accompanied by cost estimates of the accelerator and detectors and by estimates of operating parameters, such as power consumption. The resulting physics potential and measurement precisions are illustrated through detector simulations under realistic beam conditions.Comment: 84 pages, published as CERN Yellow Report https://cdsweb.cern.ch/record/147522

    Characteristics of Effective School Principals: A Mixed-Research Study

    Get PDF
    In this multi-stage mixed analysis study, the views of 615 college students enrolled at two Hispanic-serving institutions in the Southwest were obtained concerning characteristics of effective school principals. Through the method of constant comparison (qualitative phase), 29 dominant themes were determined to be present in respondent-identified characteristics of effective school principals: Leader, Communication, Caring, Understanding, Knowledgeable, Fair, Works Well With Others, Listening, Service, Organized, Disciplinarian, Good Attitude, Patience, Respectful, Helping, Open-Mindedness, Motivating, Professional, Flexible, Being Visible, Honest, Good Role Model, Responsible, Builds Relationships, Involving, Consistent, Friendly, Focus on Schools, and Experience in the Classroom. An exploratory factor analysis revealed that these 29 themes represented five meta-themes. Then these themes (quantitative phase) were converted into numbers (i.e., quantitized) into an interrespondent matrix that consisted of a series of 1s and 0s and were analyzed to determine whether participants’ themes differed as a function of sex, ethnicity, college status, and first-generation/non-first-generation status. Statistically significant differences were present between undergraduate and graduate students, between males and females, between Hispanics and Whites, and between first-generation and non-first-generation college students. Implications are discussed

    Efficient Algorithms for Optimal Control of Quantum Dynamics: The "Krotov'' Method unencumbered

    Full text link
    Efficient algorithms for the discovery of optimal control designs for coherent control of quantum processes are of fundamental importance. One important class of algorithms are sequential update algorithms generally attributed to Krotov. Although widely and often successfully used, the associated theory is often involved and leaves many crucial questions unanswered, from the monotonicity and convergence of the algorithm to discretization effects, leading to the introduction of ad-hoc penalty terms and suboptimal update schemes detrimental to the performance of the algorithm. We present a general framework for sequential update algorithms including specific prescriptions for efficient update rules with inexpensive dynamic search length control, taking into account discretization effects and eliminating the need for ad-hoc penalty terms. The latter, while necessary to regularize the problem in the limit of infinite time resolution, i.e., the continuum limit, are shown to be undesirable and unnecessary in the practically relevant case of finite time resolution. Numerical examples show that the ideas underlying many of these results extend even beyond what can be rigorously proved.Comment: 19 pages, many figure
    corecore