107 research outputs found

    Synthesis of β‐ 3 H‐mitotane for use in a rapid assay for mitotane metabolism

    Full text link
    A 3 H + ‐release method has been developed for the assay of β‐hydroxylation of the adrenolytic drug mitotane. β‐ 3 H‐mitotane was synthesized by the reduction of 1‐(2‐chlorophenyl)‐1‐(4‐chlorophenyl)‐2,2,2‐trichloroethane by an aluminium‐Hg 2 Cl 2 couple in the presence of 3 H 2 O. For β‐hydroxylation of mitotane, the 3 H + ‐release assay is more efficient and sensitive than a method utilizing 14 C‐mitotane and chromatographic separation of metabolites by HPLC. The 3 H + ‐release assay has been used to evaluate the ability of adrenal tumors to metabolize mitotane via the β‐ hydroxylation route.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90382/1/2580360204_ftp.pd

    Comparison of the adrenalytic activity of mitotane and a methylated homolog on normal adrenal cortex and adrenal cortical carcinoma

    Full text link
    Mitotane is an important adrenalytic drug for the treatment of adrenal cancer whose use is limited by toxicity. Reports from another laboratory indicated that a methylated homolog of Mitotane (Mitometh) tested in guinea pigs possessed comparable adrenalytic activity but was less toxic than Mitotane. This observation prompted us to undertake a comparative study of these two drugs on the basis that Mitometh may be a superior agent for the treatment of adrenal cancer. Preliminary studies in guinea pigs failed to show a significant adrenalytic effect for either Mitotane or Mitometh. Thus, we extended the study to 13 mongrel dogs weighing 12–15 kg that were treated daily with Mitometh or Mitotane (50–100 mg/kg) for 6 or 12 days. Cortisol decreased to undetectable levels and adrenocorticotropic hormone (ACTH) rose to 10 times the baseline levels within 72 h in Mitotane-treated animals. Despite the achievement of similar drug levels, Mitometh treatment in dogs failed to suppress cortisol or increase ACTH. To determine whether these differences were due to differences in bioavailability, we measured the relative concentration of Mitotane and Mitometh in homogenates of adrenal cortex obtained from Mitotane- and Mitometh-treated dogs. The adrenal concentration of Mitometh determined in Mitometh-treated dogs was 5 times higher than the concentration of Mitotane measured in Mitotane-treated animals. Whereas the adrenal glands of Mitotane-treated dogs showed hemorrhage and necrosis, the Mitometh-treated animals showed no adrenal damage. Despite the lack of adrenalytic activity, Mitometh maintained its toxicity as demonstrated by microscopic evidence of hepatic necrosis and an increase in hepatic enzymes. The adrenalytic effects of both agents was also studied in vitro using a human functioning adrenal cortical carcinoma cell line. NCI-H295. Whereas Mitotane strongly suppressed cell growth, Mitometh had a weaker effect. We conclude that Mitometh is not likely to be effective in the therapy of adrenal cancer. Moreover, the results of this study are supportive of the view that metabolic transformation of Mitotane is in some way linked to its adrenalytic action.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46925/1/280_2004_Article_BF00685036.pd

    Systemic therapy of Cushing’s syndrome

    Get PDF
    Cushing’s disease (CD) in a stricter sense derives from pathologic adrenocorticotropic hormone (ACTH) secretion usually triggered by micro- or macroadenoma of the pituitary gland. It is, thus, a form of secondary hypercortisolism. In contrast, Cushing’s syndrome (CS) describes the complexity of clinical consequences triggered by excessive cortisol blood levels over extended periods of time irrespective of their origin. CS is a rare disease according to the European orphan regulation affecting not more than 5/10,000 persons in Europe. CD most commonly affects adults aged 20–50 years with a marked female preponderance (1:5 ratio of male vs. female). Patient presentation and clinical symptoms substantially vary depending on duration and plasma levels of cortisol. In 80% of cases CS is ACTH-dependent and in 20% of cases it is ACTH-independent, respectively. Endogenous CS usually is a result of a pituitary tumor. Clinical manifestation of CS, apart from corticotropin-releasing hormone (CRH-), ACTH-, and cortisol-producing (malign and benign) tumors may also be by exogenous glucocorticoid intake. Diagnosis of hypercortisolism (irrespective of its origin) comprises the following: Complete blood count including serum electrolytes, blood sugar etc., urinary free cortisol (UFC) from 24 h-urine sampling and circadian profile of plasma cortisol, plasma ACTH, dehydroepiandrosterone, testosterone itself, and urine steroid profile, Low-Dose-Dexamethasone-Test, High-Dose-Dexamethasone-Test, after endocrine diagnostic tests: magnetic resonance imaging (MRI), ultra-sound, computer tomography (CT) and other localization diagnostics. First-line therapy is trans-sphenoidal surgery (TSS) of the pituitary adenoma (in case of ACTH-producing tumors). In patients not amenable for surgery radiotherapy remains an option. Pharmacological therapy applies when these two options are not amenable or refused. In cases when pharmacological therapy becomes necessary, Pasireotide should be used in first-line in CD. CS patients are at an overall 4-fold higher mortality rate than age- and gender-matched subjects in the general population. The following article describes the most prominent substances used for clinical management of CS and gives a systematic overview of safety profiles, pharmacokinetic (PK)-parameters, and regulatory framework

    Adrenal proteins bound by a reactive intermediate of mitotane

    Full text link
      Purpose : Mitotane ( o,p ′-DDD), is the only adrenolytic agent available for the treatment of adrenocortical carcinoma. Previous studies have shown that mitotane covalently binds to adrenal proteins following its metabolism in adrenocortical tissue to a reactive acyl chloride intermediate. It was the objective of this study to compare the electrophoresis separation patterns of such adducts following activation of mitotane by various adrenocortical sources. Methods:  With the use of a 125 I-labeled analog of mitotane, 1-(2-chlorophenyl)-1-(4-iodophenyl)-2,2-dichloroethane, gel electrophoresis patterns were obtained for homogenates from bovine, canine and human adrenocortical preparations as well as from a human adrenal preparation. Western immunoblotting analysis was used to test the resulting patterns for adducts of cytochrome P-450 SCC and adrenodoxin. Results:  The electrophoresis separations were similar for all preparations, with bands at apparent molecular weights of 49.5 and 11.5 kDa being the most pronounced. Radiolabeling of the proteins of a human adrenal cancer cell line NCI H-295 was weak, but a band at 11.5 kDa was detected. Western immunoblotting analyses indicated that the band at 49.5 kDa corresponded in molecular weight to that of adrenal cytochrome P-450 SCC , but the band at 11.5 kDa did not correspond to adrenodoxin. Conclusions:  The similarity of the results with canine and bovine adrenal preparations to that of human material offers useful systems for studying mitotane and its analogs. This should aid in understanding the mechanism of action of mitotane and in the design of compounds for the treatment of adrenocortical carcinoma.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42096/1/280-39-6-537_70390537.pd
    corecore