2,133 research outputs found
Grid simulation services for the medical community
The first part of this paper presents a selection of medical simulation applications, including image reconstruction, near real-time registration for neuro-surgery, enhanced dose distribution calculation for radio-therapy, inhaled drug delivery prediction, plastic surgery planning and cardio-vascular system simulation. The latter two topics are discussed in some detail. In the second part, we show how such services can be made available to the clinical practitioner using Grid technology. We discuss the developments and experience made during the EU project GEMSS, which provides reliable, efficient, secure and lawful medical Grid services
The ability of the National Early Warning Score (NEWS) to discriminate patients at risk of early cardiac arrest, unanticipated intensive care unit admission, and death
INTRODUCTION:
Early warning scores (EWS) are recommended as part of the early recognition and response to patient deterioration. The Royal College of Physicians recommends the use of a National Early Warning Score (NEWS) for the routine clinical assessment of all adult patients.
METHODS:
We tested the ability of NEWS to discriminate patients at risk of cardiac arrest, unanticipated intensive care unit (ICU) admission or death within 24h of a NEWS value and compared its performance to that of 33 other EWSs currently in use, using the area under the receiver-operating characteristic (AUROC) curve and a large vital signs database (n=198,755 observation sets) collected from 35,585 consecutive, completed acute medical admissions.
RESULTS:
The AUROCs (95% CI) for NEWS for cardiac arrest, unanticipated ICU admission, death, and any of the outcomes, all within 24h, were 0.722 (0.685-0.759), 0.857 (0.847-0.868), 0.894 (0.887-0.902), and 0.873 (0.866-0.879), respectively. Similarly, the ranges of AUROCs (95% CI) for the other 33 EWSs were 0.611 (0.568-0.654) to 0.710 (0.675-0.745) (cardiac arrest); 0.570 (0.553-0.568) to 0.827 (0.814-0.840) (unanticipated ICU admission); 0.813 (0.802-0.824) to 0.858 (0.849-0.867) (death); and 0.736 (0.727-0.745) to 0.834 (0.826-0.842) (any outcome).
CONCLUSIONS:
NEWS has a greater ability to discriminate patients at risk of the combined outcome of cardiac arrest, unanticipated ICU admission or death within 24h of a NEWS value than 33 other EWSs
Calorimetric readout of a superconducting proximity-effect thermometer
A proximity-effect thermometer measures the temperature dependent critical
supercurrent in a long superconductor - normal metal - superconductor (SNS)
Josephson junction. Typically, the transition from the superconducting to the
normal state is detected by monitoring the appearance of a voltage across the
junction. We describe a new approach to detect the transition based on the
temperature increase in the resistive state due to Joule heating. Our method
increases the sensitivity and is especially applicable for temperatures below
about 300 mK.Comment: 10 pages, 5 figures. To appear in the proceedings of the Conference
on Micro- and Nanocryogenics (LT25 satellite) organized in Espoo, Finland
(2008
A Comparison of the Quick Sequential (Sepsis-Related) Organ Failure Assessment Score and the National Early Warning Score in Non-ICU Patients With/Without Infection.
OBJECTIVES: The Sepsis-3 task force recommended the quick Sequential (Sepsis-Related) Organ Failure Assessment score for identifying patients with suspected infection who are at greater risk of poor outcomes, but many hospitals already use the National Early Warning Score to identify high-risk patients, irrespective of diagnosis. We sought to compare the performance of quick Sequential (Sepsis-Related) Organ Failure Assessment and National Early Warning Score in hospitalized, non-ICU patients with and without an infection. DESIGN: Retrospective cohort study. SETTING: Large U.K. General Hospital. PATIENTS: Adults hospitalized between January 1, 2010, and February 1, 2016. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We applied the quick Sequential (Sepsis-Related) Organ Failure Assessment score and National Early Warning Score to 5,435,344 vital signs sets (241,996 hospital admissions). Patients were categorized as having no infection, primary infection, or secondary infection using International Classification of Diseases, 10th Edition codes. National Early Warning Score was significantly better at discriminating in-hospital mortality, irrespective of infection status (no infection, National Early Warning Score 0.831 [0.825-0.838] vs quick Sequential [Sepsis-Related] Organ Failure Assessment 0.688 [0.680-0.695]; primary infection, National Early Warning Score 0.805 [0.799-0.812] vs quick Sequential [Sepsis-Related] Organ Failure Assessment 0.677 [0.670-0.685]). Similarly, National Early Warning Score performed significantly better in all patient groups (all admissions, emergency medicine admissions, and emergency surgery admissions) for all outcomes studied. Overall, quick Sequential (Sepsis-Related) Organ Failure Assessment performed no better, and often worse, in admissions with infection than without. CONCLUSIONS: The National Early Warning Score outperforms the quick Sequential (Sepsis-Related) Organ Failure Assessment score, irrespective of infection status. These findings suggest that quick Sequential (Sepsis-Related) Organ Failure Assessment should be reevaluated as the system of choice for identifying non-ICU patients with suspected infection who are at greater risk of poor outcome
Inherent thermometry in a hybrid superconducting tunnel junction
We discuss inherent thermometry in a Superconductor - Normal metal -
Superconductor tunnel junction. In this configuration, the energy selectivity
of single-particle tunneling can provide a significant electron cooling,
depending on the bias voltage. The usual approach for measuring the electron
temperature consists in using an additional pair of superconducting tunnel
junctions as probes. In this paper, we discuss our experiment performed on a
different design with no such thermometer. The quasi-equilibrium in the central
metallic island is discussed in terms of a kinetic equation including injection
and relaxation terms. We determine the electron temperature by comparing the
micro-cooler experimental current-voltage characteristic with isothermal
theoretical predictions. The limits of validity of this approach, due to the
junctions asymmetry, the Andreev reflection or the presence of sub-gap states
are discussed
Influence of temperature gradients on tunnel junction thermometry below 1 K: cooling and electron-phonon coupling
We have studied thermal gradients in thin Cu and AlMn wires, both
experimentally and theoretically. In the experiments, the wires were Joule
heated non-uniformly at sub-Kelvin temperatures, and the resulting temperature
gradients were measured using normal metal-insulator-superconducting tunnel
junctions. The data clearly shows that even in reasonably well conducting thin
wires with a short (m) non-heated portion, significant temperature
differences can form. In most cases, the measurements agree well with a model
which includes electron-phonon interaction and electronic thermal conductivity
by the Wiedemann-Franz law.Comment: J. Low Temp. Phys. in pres
Tilt Modulus and Angle-Dependent Flux Lattice Melting in the Lowest Landau Level Approximation
For a clean high-T superconductor, we analyze the Lawrence-Doniach free
energy in a tilted magnetic field within the lowest Landau level (LLL)
approximation. The free energy maps onto that of a strictly -axis field, but
with a reduced interlayer coupling. We use this result to calculate the tilt
modulus of a vortex lattice and vortex liquid. The vortex contribution
to can be expressed in terms of the squared -axis Josephson plasmon
frequency . The transverse component of the field has very
little effect on the position of the melting curve.Comment: 8 pages, 2 figures, accepted for publication in Physical Review B
(Rapid Communications
Relative Oscillation Theory, Weighted Zeros of the Wronskian, and the Spectral Shift Function
We develop an analog of classical oscillation theory for Sturm-Liouville
operators which, rather than measuring the spectrum of one single operator,
measures the difference between the spectra of two different operators.
This is done by replacing zeros of solutions of one operator by weighted
zeros of Wronskians of solutions of two different operators. In particular, we
show that a Sturm-type comparison theorem still holds in this situation and
demonstrate how this can be used to investigate the finiteness of eigenvalues
in essential spectral gaps. Furthermore, the connection with Krein's spectral
shift function is established.Comment: 26 page
Vortex dynamics and states of artificially layered superconducting films with correlated defects
Linear resistances and -characteristics have been measured over a wide
range in the parameter space of the mixed phase of multilayered a-TaGe/Ge
films. Three films with varying interlayer coupling and correlated defects
oriented at an angle from the film normal were investigated.
Experimental data were analyzed within vortex glass models and a second order
phase transition from a resistive vortex liquid to a pinned glass phase.
Various vortex phases including changes from three to two dimensional behavior
depending on anisotropy have been identified. Careful analysis of
-characteristics in the glass phases revealed a distinctive and
-dependence of the glass exponent . The vortex dynamics in the
Bose-glass phase does not follow the predicted behavior for excitations of
vortex kinks or loops.Comment: 16 pages, 10 figures, 3 table
- …