87,734 research outputs found
Time Series Modeling of Human Operator Dynamics in Manual Control Tasks
A time-series technique is presented for identifying the dynamic characteristics of the human operator in manual control tasks from relatively short records of experimental data. Control of system excitation signals used in the identification is not required. The approach is a multi-channel identification technique for modeling multi-input/multi-output situations. The method presented includes statistical tests for validity, is designed for digital computation, and yields estimates for the frequency response of the human operator. A comprehensive relative power analysis may also be performed for validated models. This method is applied to several sets of experimental data; the results are discussed and shown to compare favorably with previous research findings. New results are also presented for a multi-input task that was previously modeled to demonstrate the strengths of the method
Model estimation and identification of manual controller objectives in complex tracking tasks
A methodology is presented for estimating the parameters in an optimal control structural model of the manual controller from experimental data on complex, multiinput/multioutput tracking tasks. Special attention is devoted to estimating the appropriate objective function for the task, as this is considered key in understanding the objectives and strategy of the manual controller. The technique is applied to data from single input/single output as well as multi input/multi outpuut experiments, and results discussed
Newtonian Limit of Conformal Gravity
We study the weak-field limit of the static spherically symmetric solution of
the locally conformally invariant theory advocated in the recent past by
Mannheim and Kazanas as an alternative to Einstein's General Relativity. In
contrast with the previous works, we consider the physically relevant case
where the scalar field that breaks conformal symmetry and generates fermion
masses is nonzero. In the physical gauge, in which this scalar field is
constant in space-time, the solution reproduces the weak-field limit of the
Schwarzschild--(anti)DeSitter solution modified by an additional term that,
depending on the sign of the Weyl term in the action, is either oscillatory or
exponential as a function of the radial distance. Such behavior reflects the
presence of, correspondingly, either a tachion or a massive ghost in the
spectrum, which is a serious drawback of the theory under discussion.Comment: 9 pages, comments and references added; the version to be published
in Phys. Rev.
An optimal control approach to pilot/vehicle analysis and Neal-Smith criteria
The approach of Neal and Smith was merged with the advances in pilot modeling by means of optimal control techniques. While confirming the findings of Neal and Smith, a methodology that explicitly includes the pilot's objective in attitude tracking was developed. More importantly, the method yields the required system bandwidth along with a better pilot model directly applicable to closed-loop analysis of systems in any order
Renormalization group flows in one-dimensional lattice models: impurity scaling, umklapp scattering and the orthogonality catastrophe
We show that to understand the orthogonality catastrophe in the half-filled
lattice model of spinless fermions with repulsive nearest neighbor interaction
and a local impurity in its Luttinger liquid phase one has to take into account
(i) the impurity scaling, (ii) unusual finite size corrections of the form
, as well as (iii) the renormalization group flow of the umklapp
scattering. The latter defines a length scale which becomes exceedingly
large the closer the system is to its transition into the charge-density wave
phase. Beyond this transition umklapp scattering is relevant in the
renormalization group sense. Field theory can only be employed for length
scales larger than . For small to intermediate two-particle interactions,
for which the regime can be accessed, and taking into account the
finite size corrections resulting from (i) and (ii) we provide strong evidence
that the impurity backscattering contribution to the orthogonality exponent is
asymptotically given by . While further increasing the two-particle
interaction leads to a faster renormalization group flow of the impurity
towards the cut chain fixed point, the increased bare amplitude of the umklapp
scattering renders it virtually impossible to confirm the expected asymptotic
value of given the accessible system sizes. We employ the density matrix
renormalization group.Comment: 12 pages, 9 figure
A model for orientation effects in electron‐transfer reactions
A method for solving the single‐particle Schrödinger equation with an oblate spheroidal potential of finite depth is presented. The wave functions are then used to calculate the matrix element T_BA which appears in theories of nonadiabatic electron transfer. The results illustrate the effects of mutual orientation and separation of the two centers on TBA. Trends in these results are discussed in terms of geometrical and nodal structure effects. Analytical expressions related to T_BA for states of spherical wells are presented and used to analyze the nodal structure effects for T_BA for the spheroidal wells
Process for purification of solids
A process for purifying solids, especially silicon, by melting and subsequent resolidification, is described. Silicon used in solar cell manufacturing is processed more efficiently and cost effectively
Nucleon spin structure at very high-x
Dyson-Schwinger equation treatments of the strong interaction show that the
presence and importance of nonpointlike diquark correlations within the nucleon
are a natural consequence of dynamical chiral symmetry breaking. Using this
foundation, we deduce a collection of simple formulae, expressed in terms of
diquark appearance and mixing probabilities, from which one may compute ratios
of longitudinal-spin-dependent u- and d-quark parton distribution functions on
the domain x =1. A comparison with predictions from other approaches plus a
consideration of extant and planned experiments shows that the measurement of
nucleon longitudinal spin asymmetries on x =1 can add considerably to our
capacity for discriminating between contemporary pictures of nucleon structure.Comment: 6 pages, 1 table, 3 figures. To appear in Phys. Lett.
- …