229 research outputs found

    Mesoscopic Fluctuations in Quantum Dots in the Kondo Regime

    Full text link
    Properties of the Kondo effect in quantum dots depend sensitively on the coupling parameters and so on the realization of the quantum dot -- the Kondo temperature itself becomes a mesoscopic quantity. Assuming chaotic dynamics in the dot, we use random matrix theory to calculate the distribution of both the Kondo temperature and the conductance in the Coulomb blockade regime. We study two experimentally relevant cases: leads with single channels and leads with many channels. In the single-channel case, the distribution of the conductance is very wide as TKT_K fluctuates on a logarithmic scale. As the number of channels increases, there is a slow crossover to a self-averaging regime.Comment: 4 pages, 3 figure

    Magnetotransport through a strongly interacting quantum dot

    Full text link
    We study the effect of a magnetic field on the conductance through a strongly interacting quantum dot by using the finite temperature extension of Wilson's numerical renormalization group method to dynamical quantities. The quantum dot has one active level for transport and is modelled by an Anderson impurity attached to left and right electron reservoirs. Detailed predictions are made for the linear conductance and the spin-resolved conductance as a function of gate voltage, temperature and magnetic field strength. A strongly coupled quantum dot in a magnetic field acts as a spin filter which can be tuned by varying the gate voltage. The largest spin-filtering effect is found in the range of gate voltages corresponding to the mixed valence regime of the Anderson impurity model.Comment: Revised version, to appear in PRB, 4 pages, 4 figure

    Flux-quantum-modulated Kondo conductance in a multielectron quantum dot

    Get PDF
    We investigate a lateral semiconductor quantum dot with a large number of electrons in the limit of strong coupling to the leads. A Kondo effect is observed and can be tuned in a perpendicular magnetic field. This Kondo effect does not exhibit Zeeman splitting. It shows a modulation with the periodicity of one flux quantum per dot area at low temperatures. The modulation leads to a novel, strikingly regular stripe pattern for a wide range in magnetic field and number of electrons.Comment: 4 pages, 5 figure

    Kondo effect induced by a magnetic field

    Full text link
    We study peculiarities of transport through a Coulomb blockade system tuned to the vicinity of the spin transition in its ground state. Such transitions can be induced in practice by application of a magnetic field. Tunneling of electrons between the dot and leads mixes the states belonging to the ground state manifold of the dot. Remarkably, both the orbital and spin degrees of freedom of the electrons are engaged in the mixing at the singlet-triplet transition point. We present a model which provides an adequate theoretical description of recent experiments with semiconductor quantum dots and carbon nanotubes

    Kondo effect in multielectron quantum dots at high magnetic fields

    Full text link
    We present a general description of low temperature transport through a quantum dot with any number of electrons at filling factor 1<ν<21<\nu <2. We provide a general description of a novel Kondo effect which is turned on by application of an appropriate magnetic field. The spin-flip scattering of carriers by the quantum dot only involves two states of the scatterer which may have a large spin. This process is described by spin-flip Hubbard operators, which change the angular momentum, leading to a Kondo Hamiltonian. We obtain antiferromagnetic exchange couplings depending on tunneling amplitudes and correlation effects. Since Kondo temperature has an exponential dependence on exchange couplings, quantitative variations of the parameters in different regimes have important experimental consequences. In particular, we discuss the {\it chess board} aspect of the experimental conductance when represented in a grey scale as a function of both the magnetic field and the gate potential affecting the quantum dot

    Interference and interaction effects in multi-level quantum dots

    Full text link
    Using renormalization group techniques, we study spectral and transport properties of a spinless interacting quantum dot consisting of two levels coupled to metallic reservoirs. For strong Coulomb repulsion UU and an applied Aharonov-Bohm phase ϕ\phi, we find a large direct tunnel splitting Δ(Γ/π)cos(ϕ/2)ln(U/ωc)|\Delta|\sim (\Gamma/\pi)|\cos(\phi/2)|\ln(U/\omega_c) between the levels of the order of the level broadening Γ\Gamma. As a consequence we discover a many-body resonance in the spectral density that can be measured via the absorption power. Furthermore, for ϕ=π\phi=\pi, we show that the system can be tuned into an effective Anderson model with spin-dependent tunneling.Comment: 5 pages, 4 figures included, typos correcte

    Low temperature transport in AC-driven Quantum Dots in the Kondo regime

    Full text link
    We present a fully nonequilibrium calculation of the low temperature transport properties of a quantum dot in the Kondo regime when an AC potential is applied to the gate voltage. We solve a time dependent Anderson model with finite on-site Coulomb interaction. The interaction self-energy is calculated up to second order in perturbation theory in the on-site interaction, in the context of the Keldysh non-equilibrium technique, and the effect of the AC voltage is taken into account exactly for all ranges of AC frequencies and AC intensities. The obtained linear conductance and time-averaged density of states of the quantum dot evolve in a non trivial way as a function of the AC frequency and AC intensity of the harmonic modulation.Comment: 30 pages,7 figure

    Non-equilibrium Kondo effect in asymmetrically coupled quantum dot

    Full text link
    The quantum dot asymmetrically coupled to the external leads has been analysed theoretically by means of the equation of motion (EOM) technique and the non-crossing approximation (NCA). The system has been described by the single impurity Anderson model. To calculate the conductance across the device the non-equilibrium Green's function technique has been used. The obtained results show the importance of the asymmetry of the coupling for the appearance of the Kondo peak at nonzero voltages and qualitatively explain recent experiments.Comment: 7 pages, 6 figures, Physical Review B (accepted for publication

    Resonant tunneling through ultrasmall quantum dots: zero-bias anomalies, magnetic field dependence, and boson-assisted transport

    Full text link
    We study resonant tunneling through a single-level quantum dot in the presence of strong Coulomb repulsion beyond the perturbative regime. The level is either spin-degenerate or can be split by a magnetic field. We, furthermore, discuss the influence of a bosonic environment. Using a real-time diagrammatic formulation we calculate transition rates, the spectral density and the nonlinear IVI-V characteristic. The spectral density shows a multiplet of Kondo peaks split by the transport voltage and the boson frequencies, and shifted by the magnetic field. This leads to zero-bias anomalies in the differential conductance, which agree well with recent experimental results for the electron transport through single-charge traps. Furthermore, we predict that the sign of the zero-bias anomaly depends on the level position relative to the Fermi level of the leads.Comment: 27 pages, latex, 21 figures, submitted to Phys. Rev.

    Spin Fluctuation and Persistent Current in a Mesoscopic Ring Coupled to a Quantum Dot

    Full text link
    We investigate the persistent current influenced by the spin fluctuations in a mesoscopic ring weakly coupled to a quantum dot. It is shown that the Kondo effect gives rise to some unusual features of the persistent current in the limit where the charge transfer between two subsystems is suppressed. Various aspects of the crossover from a delocalized to a localized dot limit are discussed in relation with the effect of the coherent response of the Kondo cloud to the Aharonov-Bohm flux.Comment: 4 pages, 2 figure
    corecore