25 research outputs found

    Moderate Traumatic Brain Injury Causes Acute Dendritic and Synaptic Degeneration in the Hippocampal Dentate Gyrus

    Get PDF
    Hippocampal injury-associated learning and memory deficits are frequent hallmarks of brain trauma and are the most enduring and devastating consequences following traumatic brain injury (TBI). Several reports, including our recent paper, showed that TBI brought on by a moderate level of controlled cortical impact (CCI) induces immature newborn neuron death in the hippocampal dentate gyrus. In contrast, the majority of mature neurons are spared. Less research has been focused on these spared neurons, which may also be injured or compromised by TBI. Here we examined the dendrite morphologies, dendritic spines, and synaptic structures using a genetic approach in combination with immunohistochemistry and Golgi staining. We found that although most of the mature granular neurons were spared following TBI at a moderate level of impact, they exhibited dramatic dendritic beading and fragmentation, decreased number of dendritic branches, and a lower density of dendritic spines, particularly the mushroom-shaped mature spines. Further studies showed that the density of synapses in the molecular layer of the hippocampal dentate gyrus was significantly reduced. The electrophysiological activity of neurons was impaired as well. These results indicate that TBI not only induces cell death in immature granular neurons, it also causes significant dendritic and synaptic degeneration in pathohistology. TBI also impairs the function of the spared mature granular neurons in the hippocampal dentate gyrus. These observations point to a potential anatomic substrate to explain, in part, the development of posttraumatic memory deficits. They also indicate that dendritic damage in the hippocampal dentate gyrus may serve as a therapeutic target following TBI

    Psychic wounds and the social structure: an empirical investigation

    No full text
    Empirical linkages between structure and agency, or system and life world, have traditionally not been overabundant in sociology, though work emerging in the field of the sociology of emotions does offer some illumination on this topic. This article uses data obtained in a project which investigated the impact of the Howard government’s dual reforms in the industrial relations and welfare policy arenas. In this article, we seek to explore in some depth how a system that is underpinned by the notion of dignity and rights produces shame in its supposed beneficiaries, based on the evidence in the data collected. As well, we attempt to expose the processes by which shame is produced and how it manifests among the participants in the study. The first part of the article focuses upon the broader structural context, while the second proceeds to examine how this impinges upon agents at the microsocial level. Workfare recipients are constructed as dependants, in a society that privileges independence and ignores the crucial fact of our mutual interdependency. The transcripts reveal that the denial of autonomy and respect are key mechanisms by which dignity is injured. In exploring these phenomena, the purpose of the article is to demonstrate the usually veiled connections between individuals and their larger social context

    Gallenfarbstoffe

    No full text

    The Pak1 kinase : an important regulator of neuronal morphology and function in the developing forebrain

    No full text
    The mammalian central nervous system (CNS) represents a highly complex unit, the correct function of which relies on the appropriate differentiation and survival of its neurones. It is becoming apparent that the Rho family of small GTPases and their downstream targets have a major function in regulating CNS development. Among the effectors, the role of the Pak family of kinases, especially Pak1, is becoming increasingly evident. Although highest levels of Pak1 expression and activation are detected in the developing nervous system, much remains undiscovered concerning its function in neurones. This review summarises what is currently known regarding the biological and molecular role of Pak1 in the mammalian forebrain. It emphasises the importance of Pak1 in regulating neuronal polarity, morphology, migration and synaptic function. Consequently, there are also strong indications that Pak1 is required for normal cognitive function. Furthermore, loss of Pak1 has been associated with the progression of neurodegenerative disorders, particularly Alzheimer's disease, while up-regulation and de-regulation may be responsible for oncogenic transformation of support cells within the CNS, especially astrocyte progenitors. Together, these new and exciting findings encourage the future exploration into the function of Pak1 in the nervous system, thus, paving the way for novel strategies towards improved diagnosis and therapeutic treatment of diseases that affect the CNS.Peer reviewe

    Host and Viral Factors Influencing the Pathogenesis of HIV-Associated Neurocognitive Disorders

    No full text
    corecore