12 research outputs found

    Plasmodium vivax circumsporozoite genotypes: a limited variation or new subspecies with major biological consequences?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Plasmodium vivax </it>circumsporozoite variants have been identified in several geographical areas. The real implication of the genetic variation in this region of the <it>P. vivax </it>genome has been questioned for a long time. Although previous studies have observed significant association between VK210 and the Duffy blood group, we present here that evidences of this variation are limited to the CSP central portion.</p> <p>Methods</p> <p>The phylogenetic analyses were accomplished starting from the amplification of conserved domains of <it>18 SSU RNAr </it>and <it>Cyt B</it>. The antibodies responses against the CSP peptides, MSP-1, AMA-1 and DBP were detected by ELISA, in plasma samples of individuals infected with two <it>P. vivax CS </it>genotypes: VK210 and <it>P. vivax</it>-like.</p> <p>Results</p> <p>These analyses of the two markers demonstrate high similarity among the <it>P. vivax CS </it>genotypes and surprisingly showed diversity equal to zero between VK210 and <it>P. vivax</it>-like, positioning these <it>CS </it>genotypes in the same clade. A high frequency IgG antibody against the N- and C-terminal regions of the <it>P. vivax </it>CSP was found as compared to the immune response to the R- and V- repetitive regions (<it>p </it>= 0.0005, Fisher's Exact test). This difference was more pronounced when the <it>P. vivax</it>-like variant was present in the infection (<it>p </it>= 0.003, Fisher's Exact test). A high frequency of antibody response against MSP-1 and AMA-1 peptides was observed for all <it>P. vivax CS </it>genotypes in comparison to the same frequency for DBP.</p> <p>Conclusions</p> <p>This results target that the differences among the <it>P. vivax CS </it>variants are restrict to the central repeated region of the protein, mostly nucleotide variation with important serological consequences.</p

    A saturated map of common genetic variants associated with human height

    Get PDF
    Common single-nucleotide polymorphisms (SNPs) are predicted to collectively explain 40-50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes(1). Here, using data from a genome-wide association study of 5.4 million individuals of diverse ancestries, we show that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a mean size of around 90 kb, covering about 21% of the genome. The density of independent associations varies across the genome and the regions of increased density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs (or all SNPs in the HapMap 3 panel(2)) account for 40% (45%) of phenotypic variance in populations of European ancestry but only around 10-20% (14-24%) in populations of other ancestries. Effect sizes, associated regions and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely to be explained by linkage disequilibrium and differences in allele frequency within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than are needed to implicate causal genes and variants. Overall, this study provides a comprehensive map of specific genomic regions that contain the vast majority of common height-associated variants. Although this map is saturated for populations of European ancestry, further research is needed to achieve equivalent saturation in other ancestries.A large genome-wide association study of more than 5 million individuals reveals that 12,111 single-nucleotide polymorphisms account for nearly all the heritability of height attributable to common genetic variants

    Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012

    Get PDF
    OBJECTIVE: To provide an update to the "Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock," last published in 2008. DESIGN: A consensus committee of 68 international experts representing 30 international organizations was convened. Nominal groups were assembled at key international meetings (for those committee members attending the conference). A formal conflict of interest policy was developed at the onset of the process and enforced throughout. The entire guidelines process was conducted independent of any industry funding. A stand-alone meeting was held for all subgroup heads, co- and vice-chairs, and selected individuals. Teleconferences and electronic-based discussion among subgroups and among the entire committee served as an integral part of the development. METHODS: The authors were advised to follow the principles of the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system to guide assessment of quality of evidence from high (A) to very low (D) and to determine the strength of recommendations as strong (1) or weak (2). The potential drawbacks of making strong recommendations in the presence of low-quality evidence were emphasized. Recommendations were classified into three groups: (1) those directly targeting severe sepsis; (2) those targeting general care of the critically ill patient and considered high priority in severe sepsis; and (3) pediatric considerations. RESULTS: Key recommendations and suggestions, listed by category, include: early quantitative resuscitation of the septic patient during the first 6 h after recognition (1C); blood cultures before antibiotic therapy (1C); imaging studies performed promptly to confirm a potential source of infection (UG); administration of broad-spectrum antimicrobials therapy within 1 h of the recognition of septic shock (1B) and severe sepsis without septic shock (1C) as the goal of therapy; reassessment of antimicrobial therapy daily for de-escalation, when appropriate (1B); infection source control with attention to the balance of risks and benefits of the chosen method within 12 h of diagnosis (1C); initial fluid resuscitation with crystalloid (1B) and consideration of the addition of albumin in patients who continue to require substantial amounts of crystalloid to maintain adequate mean arterial pressure (2C) and the avoidance of hetastarch formulations (1B); initial fluid challenge in patients with sepsis-induced tissue hypoperfusion and suspicion of hypovolemia to achieve a minimum of 30 mL/kg of crystalloids (more rapid administration and greater amounts of fluid may be needed in some patients (1C); fluid challenge technique continued as long as hemodynamic improvement is based on either dynamic or static variables (UG); norepinephrine as the first-choice vasopressor to maintain mean arterial pressure ≥65 mmHg (1B); epinephrine when an additional agent is needed to maintain adequate blood pressure (2B); vasopressin (0.03 U/min) can be added to norepinephrine to either raise mean arterial pressure to target or to decrease norepinephrine dose but should not be used as the initial vasopressor (UG); dopamine is not recommended except in highly selected circumstances (2C); dobutamine infusion administered or added to vasopressor in the presence of (a) myocardial dysfunction as suggested by elevated cardiac filling pressures and low cardiac output, or (b) ongoing signs of hypoperfusion despite achieving adequate intravascular volume and adequate mean arterial pressure (1C); avoiding use of intravenous hydrocortisone in adult septic shock patients if adequate fluid resuscitation and vasopressor therapy are able to restore hemodynamic stability (2C); hemoglobin target of 7-9 g/dL in the absence of tissue hypoperfusion, ischemic coronary artery disease, or acute hemorrhage (1B); low tidal volume (1A) and limitation of inspiratory plateau pressure (1B) for acute respiratory distress syndrome (ARDS); application of at least a minimal amount of positive end-expiratory pressure (PEEP) in ARDS (1B); higher rather than lower level of PEEP for patients with sepsis-induced moderate or severe ARDS (2C); recruitment maneuvers in sepsis patients with severe refractory hypoxemia due to ARDS (2C); prone positioning in sepsis-induced ARDS patients with a PaO (2)/FiO (2) ratio of ≤100 mm Hg in facilities that have experience with such practices (2C); head-of-bed elevation in mechanically ventilated patients unless contraindicated (1B); a conservative fluid strategy for patients with established ARDS who do not have evidence of tissue hypoperfusion (1C); protocols for weaning and sedation (1A); minimizing use of either intermittent bolus sedation or continuous infusion sedation targeting specific titration endpoints (1B); avoidance of neuromuscular blockers if possible in the septic patient without ARDS (1C); a short course of neuromuscular blocker (no longer than 48 h) for patients with early ARDS and a PaO (2)/FI O (2) 180 mg/dL, targeting an upper blood glucose ≤180 mg/dL (1A); equivalency of continuous veno-venous hemofiltration or intermittent hemodialysis (2B); prophylaxis for deep vein thrombosis (1B); use of stress ulcer prophylaxis to prevent upper gastrointestinal bleeding in patients with bleeding risk factors (1B); oral or enteral (if necessary) feedings, as tolerated, rather than either complete fasting or provision of only intravenous glucose within the first 48 h after a diagnosis of severe sepsis/septic shock (2C); and addressing goals of care, including treatment plans and end-of-life planning (as appropriate) (1B), as early as feasible, but within 72 h of intensive care unit admission (2C). Recommendations specific to pediatric severe sepsis include: therapy with face mask oxygen, high flow nasal cannula oxygen, or nasopharyngeal continuous PEEP in the presence of respiratory distress and hypoxemia (2C), use of physical examination therapeutic endpoints such as capillary refill (2C); for septic shock associated with hypovolemia, the use of crystalloids or albumin to deliver a bolus of 20 mL/kg of crystalloids (or albumin equivalent) over 5-10 min (2C); more common use of inotropes and vasodilators for low cardiac output septic shock associated with elevated systemic vascular resistance (2C); and use of hydrocortisone only in children with suspected or proven "absolute"' adrenal insufficiency (2C). CONCLUSIONS: Strong agreement existed among a large cohort of international experts regarding many level 1 recommendations for the best care of patients with severe sepsis. Although a significant number of aspects of care have relatively weak support, evidence-based recommendations regarding the acute management of sepsis and septic shock are the foundation of improved outcomes for this important group of critically ill patients

    Serotyping and Genotyping of Salmonella Strains Isolated From Broilers, Chicken Carcasses Before and After Chilling, and Frozen Chicken Breasts Produced in The States of Mato Grosso do Sul and Santa Catarina, Brazil

    No full text
    ABSTRACT The present study investigated the effectiveness of a single Salmonella prevention and control program applied in two different processing plants, located in the states of Mato Grosso do Sul (plant A) and Santa Catarina (Plant B), belonging to the same company, and identified Salmonella strain subtypes isolated from broilers, carcasses before and after chilling, and frozen chicken breasts. The Salmonella prevention and control program was 90% effective in plant A and 100% in plant B, considering a level of 10% positive samples per frozen chicken breast batch acceptable. A total of 128 strains were serotyped, being 10 from drag swabs, 31 from cloacal swabs, 83 from carcasses, and 4 from frozen chicken breasts. After serotyping analysis, 30 strains isolated at different processing steps and drag swabs, and three Salmonella Minnesota strains isolated in 2012 in plant A, were genotyped by PFGE. In plant A, the most frequently strain isolated was Salmonella Minnesota (90.35%), followed by Salmonella Newport (8.77%), and in Plant B, Salmonella Senftenberg (80%). Salmonella Minnesota strains were differentiated by PFGE into 19 pulsotypes distributed in three clusters. The phenotypic identification by serotyping of four strains diverged from their PFGE genotypic results. Most Salmonella Minnesota strains genotyped in plant A and the strains isolated from environmental samples in 2012 in the same broiler processing plant belong to a single cluster, confirming the dominance and persistence of this clone over time

    Serotyping and Genotyping of Salmonella Strains Isolated From Broilers, Chicken Carcasses Before and After Chilling, and Frozen Chicken Breasts Produced in The States of Mato Grosso do Sul and Santa Catarina, Brazil

    No full text
    <div><p>ABSTRACT The present study investigated the effectiveness of a single Salmonella prevention and control program applied in two different processing plants, located in the states of Mato Grosso do Sul (plant A) and Santa Catarina (Plant B), belonging to the same company, and identified Salmonella strain subtypes isolated from broilers, carcasses before and after chilling, and frozen chicken breasts. The Salmonella prevention and control program was 90% effective in plant A and 100% in plant B, considering a level of 10% positive samples per frozen chicken breast batch acceptable. A total of 128 strains were serotyped, being 10 from drag swabs, 31 from cloacal swabs, 83 from carcasses, and 4 from frozen chicken breasts. After serotyping analysis, 30 strains isolated at different processing steps and drag swabs, and three Salmonella Minnesota strains isolated in 2012 in plant A, were genotyped by PFGE. In plant A, the most frequently strain isolated was Salmonella Minnesota (90.35%), followed by Salmonella Newport (8.77%), and in Plant B, Salmonella Senftenberg (80%). Salmonella Minnesota strains were differentiated by PFGE into 19 pulsotypes distributed in three clusters. The phenotypic identification by serotyping of four strains diverged from their PFGE genotypic results. Most Salmonella Minnesota strains genotyped in plant A and the strains isolated from environmental samples in 2012 in the same broiler processing plant belong to a single cluster, confirming the dominance and persistence of this clone over time.</p></div
    corecore