36 research outputs found
Confidence in uncertainty: Error cost and commitment in early speech hypotheses
© 2018 Loth et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Interactions with artificial agents often lack immediacy because agents respond slower than their users expect. Automatic speech recognisers introduce this delay by analysing a user’s utterance only after it has been completed. Early, uncertain hypotheses of incremental speech recognisers can enable artificial agents to respond more timely. However, these hypotheses may change significantly with each update. Therefore, an already initiated action may turn into an error and invoke error cost. We investigated whether humans would use uncertain hypotheses for planning ahead and/or initiating their response. We designed a Ghost-in-the-Machine study in a bar scenario. A human participant controlled a bartending robot and perceived the scene only through its recognisers. The results showed that participants used uncertain hypotheses for selecting the best matching action. This is comparable to computing the utility of dialogue moves. Participants evaluated the available evidence and the error cost of their actions prior to initiating them. If the error cost was low, the participants initiated their response with only suggestive evidence. Otherwise, they waited for additional, more confident hypotheses if they still had time to do so. If there was time pressure but only little evidence, participants grounded their understanding with echo questions. These findings contribute to a psychologically plausible policy for human-robot interaction that enables artificial agents to respond more timely and socially appropriately under uncertainty
Effect of Age on Variability in the Production of Text-Based Global Inferences
As we age, our differences in cognitive skills become more visible, an effect especially true for memory and problem solving skills (i.e., fluid intelligence). However, by contrast with fluid intelligence, few studies have examined variability in measures that rely on one’s world knowledge (i.e., crystallized intelligence). The current study investigated whether age increased the variability in text based global inference generation–a measure of crystallized intelligence. Global inference generation requires the integration of textual information and world knowledge and can be expressed as a gist or lesson. Variability in generating two global inferences for a single text was examined in young-old (62 to 69 years), middle-old (70 to 76 years) and old-old (77 to 94 years) adults. The older two groups showed greater variability, with the middle elderly group being most variable. These findings suggest that variability may be a characteristic of both fluid and crystallized intelligence in aging