76 research outputs found

    Adaptive Evolution of a Stress Response Protein

    Get PDF
    Some cancers are mediated by an interplay between tissue damage, pathogens and localised innate immune responses, but the mechanisms that underlie these linkages are only beginning to be unravelled.Here we identify a strong signature of adaptive evolution on the DNA sequence of the mammalian stress response gene SEP53, a member of the epidermal differentiation complex fused-gene family known for its role in suppressing cancers. The SEP53 gene appears to have been subject to adaptive evolution of a type that is commonly (though not exclusively) associated with coevolutionary arms races. A similar pattern of molecular evolution was not evident in the p53 cancer-suppressing gene.Our data thus raises the possibility that SEP53 is a component of the mucosal/epithelial innate immune response engaged in an ongoing interaction with a pathogen. Although the pathogenic stress mediating adaptive evolution of SEP53 is not known, there are a number of well-known candidates, in particular viruses with established links to carcinoma

    Functional Conservation of Cis-Regulatory Elements of Heat-Shock Genes over Long Evolutionary Distances

    Get PDF
    Transcriptional control of gene regulation is an intricate process that requires precise orchestration of a number of molecular components. Studying its evolution can serve as a useful model for understanding how complex molecular machines evolve. One way to investigate evolution of transcriptional regulation is to test the functions of cis-elements from one species in a distant relative. Previous results suggested that few, if any, tissue-specific promoters from Drosophila are faithfully expressed in C. elegans. Here we show that, in contrast, promoters of fly and human heat-shock genes are upregulated in C. elegans upon exposure to heat. Inducibility under conditions of heat shock may represent a relatively simple “on-off” response, whereas complex expression patterns require integration of multiple signals. Our results suggest that simpler aspects of regulatory logic may be retained over longer periods of evolutionary time, while more complex ones may be diverging more rapidly

    An animal model to evaluate the function and regulation of the adaptively evolving stress protein SEP53 in oesophageal bile damage responses

    Get PDF
    Squamous epithelium in mammals has evolved an atypical stress response involving down-regulation of the classic HSP70 protein and induction of sets of proteins including one named SEP53. This atypical stress response might be due to the unusual environmental pressures placed on squamous tissue. In fact, SEP53 plays a role as an anti-apoptotic factor in response to DNA damage induced by deoxycholic acid stresses implicated in oesophageal reflux disease. SEP53 also has a genetic signature characteristic of an adaptively and rapidly evolving gene, and this observation has been used to imply a role for SEP53 in immunity. Physiological models of squamous tissue are required to further define the regulation and function of SEP53. We examined whether porcine squamous epithelium would be a good model to study SEP53, since this animal suffers from a bile-reflux disease in squamous oesophageal tissue. We have (1) cloned and sequenced the porcine SEP53 locus from porcine bacterial artificial chromosome genomic DNA, (2) confirmed the strikingly divergent nature of the C-terminal portion of the SEP53 gene amongst mammals, (3) discovered that a function of the conserved N-terminal domain of the gene is to maintain cytoplasmic localisation, and (4) examined SEP53 expression in normal and diseased porcine pars oesophagea. SEP53 expression in porcine tissue was relatively confined to gastric squamous epithelium, consistent with its expression in normal human squamous epithelium. Immunohistochemical staining for SEP53 protein in normal and damaged pars oesophagea demonstrated significant stabilisation of SEP53 protein in the injured tissue. These results suggest that porcine squamous epithelium would be a robust physiological model to examine the evolution and function of the SEP53 stress pathway in modulating stress-induced responses in squamous tissue
    corecore