7 research outputs found
A flexible component-based robot control architecture for hormonal modulation of behaviour and affect
This document is the Accepted Manuscritpt of a paper published in Proceedings of 18th Annual Conference, TAROS 2017, Guildford, UK, July 19–21, 2017. Under embargo. Embargo end date: 20 July 2018. The final publication is available at Springer via https://link.springer.com/chapter/10.1007%2F978-3-319-64107-2_36. © 2017 Springer, Cham.In this paper we present the foundations of an architecture that will support the wider context of our work, which is to explore the link between affect, perception and behaviour from an embodied perspective and assess their relevance to Human Robot Interaction (HRI). Our approach builds upon existing affect-based architectures by combining artificial hormones with discrete abstract components that are designed with the explicit consideration of influencing, and being receptive to, the wider affective state of the robot
Evidence for maintenance of sex determinants but not of sexual stages in red yeasts, a group of early diverged basidiomycetes
<p>Abstract</p> <p>Background</p> <p>The red yeasts are an early diverged group of basidiomycetes comprising sexual and asexual species. Sexuality is based on two compatible mating types and sexual identity is determined by <it>MAT </it>loci that encode homeodomain transcription factors, peptide pheromones and their receptors. The objective of the present study was to investigate the presence and integrity of <it>MAT </it>genes throughout the phylogenetic diversity of red yeasts belonging to the order Sporidiobolales.</p> <p>Results</p> <p>We surveyed 18 sexual heterothallic and self-fertile species and 16 asexual species. Functional pheromone receptor homologues (<it>STE3.A1 </it>and <it>STE3.A2</it>) were found in multiple isolates of most of the sexual and asexual species. For each of the two mating types, sequence comparisons with whole-genome data indicated that synteny tended to be conserved along the pheromone receptor region. For the homeodomain transcription factor, likelihood methods suggested that diversifying selection acting on the self/non-self recognition region promotes diversity in sexual species, while rapid evolution seems to be due to relaxed selection in asexual strains.</p> <p>Conclusions</p> <p>The majority of both sexual and asexual species of red yeasts have functional pheromone receptors and homeodomain homologues. This and the frequent existence of asexual strains within sexual species, makes the separation between sexual and asexual species imprecise. Events of loss of sexuality seem to be recent and frequent, but not uniformly distributed within the Sporidiobolales. Loss of sex could promote speciation by fostering the emergence of asexual lineages from an ancestral sexual stock, but does not seem to contribute to the generation of exclusively asexual lineages that persist for a long time.</p