12 research outputs found

    Identification of sirtuin 5 inhibitors by ultrafast microchip electrophoresis using nanoliter volume samples

    No full text
    Sirtuin 5 (SIRT5) is a member of the sirtuin family of protein deacylases that catalyzes removal of post-translational modifications, such as succinyl and malonyl moieties, on lysine residues. In light of SIRT5’s roles in regulating metabolism, and its reported oncogenic functions, SIRT5 modulators would be valuable tools for basic biological research and perhaps clinically. Several fluorescence assays for sirtuin modulators have been developed; however, the use of fluorogenic substrates has the potential to cause false positive results due to interactions of engineered substrates with enzyme or test compounds. Therefore, development of high-throughput screening (HTS) assays based on other methods is valuable. In this study, we report the development of a SIRT5 assay using microchip electrophoresis (MCE) for identification of SIRT5 modulators. A novel SIRT5 substrate based on succinate dehydrogenase (SDH) was developed to allow rapid and efficient separation of substrate and product peptide. To achieve high throughput, samples were injected onto the microchip using a droplet-based scheme. By coupling this approach to existing HTS sample preparation workflows, 1408 samples were analyzed at 0.5 Hz in 46 min. Using a 250 ms separation time, 8 MCE injections could be made from each sample generating >11,000 electropherograms during analysis. Of the 1280 chemicals tested, eight were identified as inhibiting SIRT5 activity by at least 70 percent and verified by dose-response analysis

    Signaling Determinants of Glioma Cell Invasion

    No full text
    © 2020, Springer Nature Switzerland AG. Tumor cell invasiveness is a critical challenge in the clinical management of glioma patients. In addition, there is accumulating evidence that current therapeutic modalities, including anti-angiogenic therapy and radiotherapy, can enhance glioma invasiveness. Glioma cell invasion is stimulated by both autocrine and paracrine factors that act on a large array of cell surface-bound receptors. Key signaling elements that mediate receptor-initiated signaling in the regulation of glioblastoma invasion are Rho family GTPases, including Rac, RhoA and Cdc42. These GTPases regulate cell morphology and actin dynamics and stimulate cell squeezing through the narrow extracellular spaces that are typical of the brain parenchyma. Transient attachment of cells to the extracellular matrix is also necessary for glioblastoma cell invasion. Interactions with extracellular matrix components are mediated by integrins that initiate diverse intracellular signalling pathways. Key signaling elements stimulated by integrins include PI3K, Akt, mTOR and MAP kinases. In order to detach from the tumor mass, glioma cells secrete proteolytic enzymes that cleave cell surface adhesion molecules, including CD44 and L1. Key proteases produced by glioma cells include uPA, ADAMs and MMPs. Increased understanding of the molecular mechanisms that control glioma cell invasion has led to the identification of molecular targets for therapeutic intervention in this devastating disease
    corecore