55 research outputs found

    Serum-Nutrient Starvation Induces Cell Death Mediated by Bax and Puma That Is Counteracted by p21 and Unmasked by Bcl-xL Inhibition

    Get PDF
    The cyclin-dependent kinase inhibitor p21 (p21WAF1/Cip1) is a multifunctional protein known to promote cell cycle arrest and survival in response to p53-dependent and p53 independent stimuli. We herein investigated whether and how it might contribute to the survival of cancer cells that are in low-nutrient conditions during tumour growth, by culturing isogenic human colorectal cancer cell lines (HCT116) and breast cancer cell lines in a medium deprived in amino acids and serum. We show that such starvation enhances, independently from p53, the expression of p21 and that of the pro-apoptotic BH3-only protein Puma. Under these conditions, p21 prevents Puma and its downstream effector Bax from triggering the mitochondrial apoptotic pathway. This anti-apoptotic effect is exerted from the cytosol but it is unrelated to the ability of p21 to interfere with the effector caspase 3. The survival function of p21 is, however, overcome by RNA interference mediated Bcl-xL depletion, or by the pharmacological inhibitor ABT-737. Thus, an insufficient supply in nutrients may not have an overt effect on cancer cell viability due to p21 induction, but it primes these cells to die, and sensitizes them to the deleterious effects of Bcl-xL inhibitors regardless of their p53 status

    Insulin Concentration Modulates Hepatic Lipid Accumulation in Mice in Part via Transcriptional Regulation of Fatty Acid Transport Proteins

    Get PDF
    Fatty liver disease (FLD) is commonly associated with insulin resistance and obesity, but interestingly it is also observed at low insulin states, such as prolonged fasting. Thus, we asked whether insulin is an independent modulator of hepatic lipid accumulation.In mice we induced, hypo- and hyperinsulinemia associated FLD by diet induced obesity and streptozotocin treatment, respectively. The mechanism of free fatty acid induced steatosis was studied in cell culture with mouse liver cells under different insulin concentrations, pharmacological phosphoinositol-3-kinase (PI3K) inhibition and siRNA targeted gene knock-down. We found with in vivo and in vitro models that lipid storage is increased, as expected, in both hypo- and hyperinsulinemic states, and that it is mediated by signaling through either insulin receptor substrate (IRS) 1 or 2. As previously reported, IRS-1 was up-regulated at high insulin concentrations, while IRS-2 was increased at low levels of insulin concentration. Relative increase in either of these insulin substrates, was associated with an increase in liver-specific fatty acid transport proteins (FATP) 2&5, and increased lipid storage. Furthermore, utilizing pharmacological PI3K inhibition we found that the IRS-PI3K pathway was necessary for lipogenesis, while FATP responses were mediated via IRS signaling. Data from additional siRNA experiments showed that knock-down of IRSs impacted FATP levels.States of perturbed insulin signaling (low-insulin or high-insulin) both lead to increased hepatic lipid storage via FATP and IRS signaling. These novel findings offer a common mechanism of FLD pathogenesis in states of both inadequate (prolonged fasting) and ineffective (obesity) insulin signaling

    GLP-1 Analogs Reduce Hepatocyte Steatosis and Improve Survival by Enhancing the Unfolded Protein Response and Promoting Macroautophagy

    Get PDF
    Nonalcoholic fatty liver disease (NAFLD) is a known outcome of hepatosteatosis. Free fatty acids (FFA) induce the unfolded protein response (UPR) or endoplasmic reticulum (ER) stress that may induce apoptosis. Recent data indicate ER stress to be a major player in the progression of fatty liver to more aggressive lesions. Autophagy on the other hand has been demonstrated to be protective against ER stress-induced cell death. We hypothesized that exendin-4 (GLP-1 analog) treatment of fat loaded hepatocytes can reduce steatosis by autophagy which leads to reduced ER stress-related hepatocyte apoptosis.Primary human hepatocytes were loaded with saturated, cis- and trans-unsaturated fatty acids (palmitic, oleic and elaidic acid respectively). Steatosis, induced with all three fatty acids, was significantly resolved after exendin-4 treatment. Exendin-4 sustained levels of GRP78 expression in fat-loaded cells when compared to untreated fat-loaded cells alone. In contrast, CHOP (C/EBP homologous protein); the penultimate protein that leads to ER stress-related cell death was significantly decreased by exendin-4 in hepatocytes loaded with fatty acids. Finally, exendin-4 in fat loaded hepatocytes clearly promoted gene products associated with macroautophagy as measured by enhanced production of both Beclin-1 and LC3B-II, markers for autophagy; and visualized by transmission electron microscopy (TEM). Similar observations were made in mouse liver lysates after mice were fed with high fat high fructose diet and treated with a long acting GLP-1 receptor agonist, liraglutide.GLP-1 proteins appear to protect hepatocytes from fatty acid-related death by prohibition of a dysfunctional ER stress response; and reduce fatty acid accumulation, by activation of both macro-and chaperone-mediated autophagy. These findings provide a novel role for GLP-1 proteins in halting the progression of more aggressive lesions from underlying steatosis in humans afflicted with NAFLD

    CHOP Potentially Co-Operates with FOXO3a in Neuronal Cells to Regulate PUMA and BIM Expression in Response to ER Stress

    Get PDF
    Endoplasmic reticulum (ER) stress-induced apoptosis has been implicated in various neurodegenerative diseases including Parkinson Disease, Alzheimer Disease and Huntington Disease. PUMA (p53 upregulated modulator of apoptosis) and BIM (BCL2 interacting mediator of cell death), pro-apoptotic BH3 domain-only, BCL2 family members, have previously been shown to regulate ER stress-induced cell death, but the upstream signaling pathways that regulate this response in neuronal cells are incompletely defined. Consistent with previous studies, we show that both PUMA and BIM are induced in response to ER stress in neuronal cells and that transcriptional induction of PUMA regulates ER stress-induced cell death, independent of p53. CHOP (C/EBP homologous protein also known as GADD153; gene name Ddit3), a critical initiator of ER stress-induced apoptosis, was found to regulate both PUMA and BIM expression in response to ER stress. We further show that CHOP knockdown prevents perturbations in the AKT (protein kinase B)/FOXO3a (forkhead box, class O, 3a) pathway in response to ER stress. CHOP co-immunoprecipitated with FOXO3a in tunicamycin treated cells, suggesting that CHOP may also regulate other pro-apoptotic signaling cascades culminating in PUMA and BIM activation and cell death. In summary, CHOP regulates the expression of multiple pro-apoptotic BH3-only molecules through multiple mechanisms, making CHOP an important therapeutic target relevant to a number of neurodegenerative conditions

    Fibroblasts from patients with major depressive disorder show distinct transcriptional response to metabolic stressors

    Get PDF
    Major depressive disorder (MDD) is increasingly viewed as interplay of environmental stressors and genetic predisposition, and recent data suggest that the disease affects not only the brain, but the entire body. As a result, we aimed at determining whether patients with major depression have aberrant molecular responses to stress in peripheral tissues. We examined the effects of two metabolic stressors, galactose (GAL) or reduced lipids (RL), on the transcriptome and miRNome of human fibroblasts from 16 pairs of patients with MDD and matched healthy controls (CNTR). Our results demonstrate that both MDD and CNTR fibroblasts had a robust molecular response to GAL and RL challenges. Most importantly, a significant part (messenger RNAs (mRNAs): 26-33%; microRNAs (miRNAs): 81-90%) of the molecular response was only observed in MDD, but not in CNTR fibroblasts. The applied metabolic challenges uncovered mRNA and miRNA signatures, identifying responses to each stressor characteristic for the MDD fibroblasts. The distinct responses of MDD fibroblasts to GAL and RL revealed an aberrant engagement of molecular pathways, such as apoptosis, regulation of cell cycle, cell migration, metabolic control and energy production. In conclusion, the metabolic challenges evoked by GAL or RL in dermal fibroblasts exposed adaptive dysfunctions on mRNA and miRNA levels that are characteristic for MDD. This finding underscores the need to challenge biological systems to bring out disease-specific deficits, which otherwise might remain hidden under resting conditions
    • …
    corecore