1,832 research outputs found
Recommended from our members
Myricetin protects pancreatic β-cells from human islet amyloid polypeptide (hIAPP) induced cytotoxicity and restores islet function
The aberrant misfolding and self-assembly of human islet amyloid polypeptide (hIAPP)–a hormone that is co-secreted with insulin from pancreatic β-cells–into toxic oligomers, protofibrils and fibrils has been observed in type 2 diabetes mellitus (T2DM). The formation of these insoluble aggregates has been linked with the death and dysfunction of β-cells. Therefore, hIAPP aggregation has been identified as a therapeutic target for T2DM management. Several natural products are now being investigated for their potential to inhibit hIAPP aggregation and/or disaggregate preformed aggregates. In this study, we attempt to identify the anti-amyloidogenic potential of Myricetin (MYR)- a polyphenolic flavanoid, commonly found in fruits (like Syzygium cumini). Our results from biophysical studies indicated that MYR supplementation inhibits hIAPP aggregation and disaggregates preformed fibrils into non-toxic species. This protection was accompanied by inhibition of oxidative stress, reduction in lipid peroxidation and the associated membrane damage and restoration of mitochondrial membrane potential in INS-1E cells. MYR supplementation also reversed the loss of functionality in hIAPP exposed pancreatic islets via restoration of glucose-stimulated insulin secretion. Molecular dynamics simulation studies suggested that MYR molecules interact with the hIAPP pentameric fibril model at the amyloidogenic core region and thus prevents aggregation and distort the fibrils.Council of Scientific and industrial research, Government of India (RD/0111-CSIR000-016) and Indian Institute of Technology, Bombay (11IRCCSG003); Wadhwani Research Center of Bioengineering (RD/018/-
DONWR04-001/); Ramalingaswami fellowship (BT/RLF/Re-entry/11/2012; Department of Biotechnology-DBT,
Government of India); and University Grants Commission (UGC, Government of India F.4-5(18-FRP) (IV-Cycle)/2017(BSR)
Development of high-throughput methods to screen disease caused by Rhizoctonia solani AG 2-1 in oilseed rape
Background: Rhizoctonia solani (Kühn) is a soil-borne, necrotrophic fungus causing damping off, root rot and stem canker in many cultivated plants worldwide. Oilseed rape (OSR, Brassica napus) is the primary host for anastomosis group (AG) 2-1 of R. solani causing pre- and post-emergence damping-off resulting in death of seedlings and impaired crop establishment. Presently, there are no known resistant OSR genotypes and the main methods for disease control are fungicide seed treatments and cultural practices. The identification of sources of resistance for crop breeding is essential for sustainable management of the disease. However, a high-throughput, reliable screening method for resistance traits is required. The aim of this work was to develop a low cost, rapid screening method for disease phenotyping and identification of resistance traits.
Results: Four growth systems were developed and tested: (1) nutrient media plates, (2) compost trays, (3) light expanded clay aggregate (LECA) trays, and (4) a hydroponic pouch and wick system. Seedlings were inoculated with virulent AG 2-1 to cause damping-off disease and grown for a period of 4–10 days. Visual disease assessments were carried out or disease was estimated through image analysis using ImageJ.
Conclusion: Inoculation of LECA was the most suitable method for phenotyping disease caused by R. solani AG 2-1 as it enabled the detection of differences in disease severity among OSR genotypes within a short time period whilst allowing measurements to be conducted on whole plants. This system is expected to facilitate identification of resistant germplasm
Modulation of Sn concentration in ZnO nanorod array: intensification on the conductivity and humidity sensing properties
Tin (Sn)-doped zinc oxide (ZnO) nanorod arrays (TZO) were synthesized onto aluminum-doped ZnO-coated glass substrate via a facile sonicated sol–gel immersion method for humidity sensor applications. These nanorod arrays were grown at different Sn concentrations ranging from 0.6 to 3 at.%. X-ray diffraction patterns showed that the deposited TZO arrays exhibited a wurtzite structure. The stress/strain condition of the ZnO film metamorphosed from tensile strain/compressive stress to compressive strain/tensile stress when the Sn concentrations increased. Results indicated that 1 at.% Sn doping of TZO, which has the lowest tensile stress of 0.14 GPa, generated the highest conductivity of 1.31 S cm− 1. In addition, 1 at.% Sn doping of TZO possessed superior sensitivity to a humidity of 3.36. These results revealed that the optimum performance of a humidity-sensing device can be obtained mainly by controlling the amount of extrinsic element in a ZnO film
PEG-Albumin Plasma Expansion Increases Expression of MCP-1 Evidencing Increased Circulatory Wall Shear Stress: An Experimental Study
Treatment of blood loss with plasma expanders lowers blood viscosity, increasing cardiac output. However, increased flow velocity by conventional plasma expanders does not compensate for decreased viscosity in maintaining vessel wall shear stress (WSS), decreasing endothelial nitric oxide (NO) production. A new type of plasma expander using polyethylene glycol conjugate albumin (PEG-Alb) causes supra-perfusion when used in extreme hemodilution and is effective in treating hemorrhagic shock, although it is minimally viscogenic. An acute 40% hemodilution/exchange-transfusion protocol was used to compare 4% PEG-Alb to Ringer’s lactate, Dextran 70 kDa and 6% Hetastarch (670 kDa) in unanesthetized CD-1 mice. Serum cytokine analysis showed that PEG-Alb elevates monocyte chemotactic protein-1 (MCP-1), a member of a small inducible gene family, as well as expression of MIP-1α, and MIP-2. MCP-1 is specific to increased WSS. Given the direct link between increased WSS and production of NO, the beneficial resuscitation effects due to PEG-Alb plasma expansion appear to be due to increased WSS through increased perfusion and blood flow rather than blood viscosity
Perpendicular Magnetic Anisotropy in FePt Patterned Media Employing a CrV Seed Layer
A thin FePt film was deposited onto a CrV seed layer at 400°C and showed a high coercivity (~3,400 Oe) and high magnetization (900–1,000 emu/cm3) characteristic of L10 phase. However, the magnetic properties of patterned media fabricated from the film stack were degraded due to the Ar-ion bombardment. We employed a deposition-last process, in which FePt film deposited at room temperature underwent lift-off and post-annealing processes, to avoid the exposure of FePt to Ar plasma. A patterned medium with 100-nm nano-columns showed an out-of-plane coercivity fivefold larger than its in-plane counterpart and a remanent magnetization comparable to saturation magnetization in the out-of-plane direction, indicating a high perpendicular anisotropy. These results demonstrate the high perpendicular anisotropy in FePt patterned media using a Cr-based compound seed layer for the first time and suggest that ultra-high-density magnetic recording media can be achieved using this optimized top-down approach
Limits on WWZ and WW\gamma couplings from p\bar{p}\to e\nu jj X events at \sqrt{s} = 1.8 TeV
We present limits on anomalous WWZ and WW-gamma couplings from a search for
WW and WZ production in p-bar p collisions at sqrt(s)=1.8 TeV. We use p-bar p
-> e-nu jjX events recorded with the D0 detector at the Fermilab Tevatron
Collider during the 1992-1995 run. The data sample corresponds to an integrated
luminosity of 96.0+-5.1 pb^(-1). Assuming identical WWZ and WW-gamma coupling
parameters, the 95% CL limits on the CP-conserving couplings are
-0.33<lambda<0.36 (Delta-kappa=0) and -0.43<Delta-kappa<0.59 (lambda=0), for a
form factor scale Lambda = 2.0 TeV. Limits based on other assumptions are also
presented.Comment: 11 pages, 2 figures, 2 table
Novel Aptamer-Nanoparticle Bioconjugates Enhances Delivery of Anticancer Drug to MUC1-Positive Cancer Cells In Vitro
MUC1 protein is an attractive target for anticancer drug delivery owing to its overexpression in most adenocarcinomas. In this study, a reported MUC1 protein aptamer is exploited as the targeting agent of a nanoparticle-based drug delivery system. Paclitaxel (PTX) loaded poly (lactic-co-glycolic-acid) (PLGA) nanoparticles were formulated by an emulsion/evaporation method, and MUC1 aptamers (Apt) were conjugated to the particle surface through a DNA spacer. The aptamer conjugated nanoparticles (Apt-NPs) are about 225.3 nm in size with a stable in vitro drug release profile. Using MCF-7 breast cancer cell as a MUC1-overexpressing model, the MUC1 aptamer increased the uptake of nanoparticles into the target cells as measured by flow cytometry. Moreover, the PTX loaded Apt-NPs enhanced in vitro drug delivery and cytotoxicity to MUC1+ cancer cells, as compared with non-targeted nanoparticles that lack the MUC1 aptamer (P<0.01). The behavior of this novel aptamer-nanoparticle bioconjugates suggests that MUC1 aptamers may have application potential in targeted drug delivery towards MUC1-overexpressing tumors
Search For Heavy Pointlike Dirac Monopoles
We have searched for central production of a pair of photons with high
transverse energies in collisions at TeV using of data collected with the D\O detector at the Fermilab Tevatron in
1994--1996. If they exist, virtual heavy pointlike Dirac monopoles could
rescatter pairs of nearly real photons into this final state via a box diagram.
We observe no excess of events above background, and set lower 95% C.L. limits
of on the mass of a spin 0, 1/2, or 1 Dirac
monopole.Comment: 12 pages, 4 figure
The Dijet Mass Spectrum and a Search for Quark Compositeness in bar{p}p Collisions at sqrt{s} = 1.8 TeV
Using the DZero detector at the 1.8 TeV pbarp Fermilab Tevatron collider, we
have measured the inclusive dijet mass spectrum in the central pseudorapidity
region |eta_jet| < 1.0 for dijet masses greater than 200 Gev/c^2. We have also
measured the ratio of spectra sigma(|eta_jet| < 0.5)/sigma(0.5 < |eta_jet| <
1.0). The order alpha_s^3 QCD predictions are in good agreement with the data
and we rule out models of quark compositeness with a contact interaction scale
< 2.4 TeV at the 95% confidence level.Comment: 11 pages, 4 figures, 2 tables, submitted to Phys. Rev. Let
- …