12 research outputs found

    Evaluation of strain and stress states in the single point incremental forming process

    Get PDF
    Single point incremental forming (SPIF) is a promising manufacturing process suitable for small batch production. Furthermore, the material formability is enhanced in comparison with the conventional sheet metal forming processes, resulting from the small plastic zone and the incremental nature. Nevertheless, the further development of the SPIF process requires the full understanding of the material deformation mechanism, which is of great importance for the effective process optimization. In this study, a comprehensive finite element model has been developed to analyse the state of strain and stress in the vicinity of the contact area, where the plastic deformation increases by means of the forming tool action. The numerical model is firstly validated with experimental results from a simple truncated cone of AA7075-O aluminium alloy, namely, the forming force evolution, the final thickness and the plastic strain distributions. In order to evaluate accurately the through-thickness gradients, the blank is modelled with solid finite elements. The small contact area between the forming tool and the sheet produces a negative mean stress under the tool, postponing the ductile fracture occurrence. On the other hand, the residual stresses in both circumferential and meridional directions are positive in the inner skin of the cone and negative in the outer skin. They arise predominantly along the circumferential direction due to the geometrical restrictions in this direction.The authors would like to gratefully acknowledge the financial support from the Portuguese Foundation for Science and Technology (FCT) under project PTDC/EMS-TEC/1805/2012. The first author is also grateful to the FCT for the postdoctoral grant SFRH/BPD/101334/2014.info:eu-repo/semantics/publishedVersio

    Efficient force prediction for incremental sheet forming and experimental validation

    No full text
    Incremental sheet forming (ISF) has been attractive during the last decades because of its greater flexibility, increased formability and reduced forming forces. However, traditional finite element simulation used for force prediction is significantly time consuming. This study aims to provide an efficient analytical model for tangential force prediction. In the present work, forces during the cone-forming process with different wall angles and step-down sizes are recorded experimentally. Different force trends are identified and discussed with reference to different deformation mechanisms. An efficient model is proposed based on the energy method to study the deformation zone in a cone-forming process. The effects of deformation modes from shear, bending and stretching are taken into account separately by two sub-models. The final predicted tangential forces are compared with the experimental results which show an average error of 6 and 11 % in respect to the variation of step-down size and wall angle in the explored limits, respectively. The proposed model would greatly improve the prediction efficiency of forming force and benefit both the design and forming process
    corecore