22 research outputs found

    The GABA transporter 1 (SLC6A1): a novel candidate gene for anxiety disorders

    Get PDF
    Recent evidence suggests that the GABA transporter 1 (GAT-1; SLC6A1) plays a role in the pathophysiology and treatment of anxiety disorders. In order to understand the impact of genetic variation within SLC6A1 on pathological anxiety, we performed a case–control association study with anxiety disorder patients with and without syndromal panic attacks. Using the method of sequential addition of cases, we found that polymorphisms in the 5′ flanking region of SLC6A1 are highly associated with anxiety disorders when considering the severity of syndromal panic attacks as phenotype covariate. Analysing the effect size of the association, we observed a constant increase in the odds ratio for disease susceptibility with an increase in panic severity (OR ~ 2.5 in severely affected patients). Nominally significant association effects were observed considering the entire patient sample. These data indicate a high load of genetic variance within SLC6A1 on pathological anxiety and highlight GAT-1 as a promising target for treatment of anxiety disorders with panic symptoms

    Measurement of long-range pseudorapidity correlations and azimuthal harmonics in √sNN=5.02 TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Measurements of two-particle correlation functions and the first five azimuthal harmonics, v1 to v5, are presented, using 28 nb−1 of p+Pb collisions at a nucleon-nucleon center-of-mass energy of √sNN=5.02 TeV measured with the ATLAS detector at the LHC. Significant long-range “ridgelike” correlations are observed for pairs with small relative azimuthal angle (|Δϕ|2π/3) over the transverse momentum range 0.44 GeV. The v2(pT), v3(pT), and v4(pT) are compared to the vn coefficients in Pb+Pb collisions at √sNN=2.76 TeV with similar event multiplicities. Reasonable agreement is observed after accounting for the difference in the average pT of particles produced in the two collision systems

    Multilocus ISSR Markers Reveal Two Major Genetic Groups in Spanish and South African Populations of the Grapevine Fungal Pathogen Cadophora luteo-olivacea

    Get PDF
    Cadophora luteo-olivacea is a lesser-known fungal trunk pathogen of grapevine which has been recently isolated from vines showing decline symptoms in grape growing regions worldwide. In this study, 80 C. luteo-olivacea isolates (65 from Spain and 15 from South Africa) were studied. Inter-simple-sequence repeat-polymerase chain reaction (ISSR-PCR) generated 55 polymorphic loci from four ISSR primers selected from an initial screen of 13 ISSR primers. The ISSR markers revealed 40 multilocus genotypes (MLGs) in the global population. Minimum spanning network analysis showed that the MLGs from South Africa clustered around the most frequent genotype, while the genotypes from Spain were distributed all across the network. Principal component analysis and dendrograms based on genetic distance and bootstrapping identified two highly differentiated genetic clusters in the Spanish and South African C. luteo-olivacea populations, with no intermediate genotypes between these clusters. Movement within the Spanish provinces may have occurred repeatedly given the frequent retrieval of the same genotype in distant locations. The results obtained in this study provide new insights into the population genetic structure of C. luteo-olivacea in Spain and highlights the need to produce healthy and quality planting material in grapevine nurseries to avoid the spread of this fungus throughout different grape growing regions

    Delineating CD4 dependency of HIV-1: Adaptation to infect low level CD4 expressing target cells widens cellular tropism but severely impacts on envelope functionality

    Get PDF
    A hallmark of HIV-1 infection is the continuously declining number of the virus’ predominant target cells, activated CD4+ T cells. With diminishing CD4+ T cell levels, the capacity to utilize alternate cell types and receptors, including cells that express low CD4 receptor levels such as macrophages, thus becomes crucial. To explore evolutionary paths that allow HIV-1 to acquire a wider host cell range by infecting cells with lower CD4 levels, we dissected the evolution of the envelope-CD4 interaction under in vitro culture conditions that mimicked the decline of CD4high target cells, using a prototypic subtype B, R5-tropic strain. Adaptation to CD4low targets proved to severely alter envelope functions including trimer opening as indicated by a higher affinity to CD4 and loss in shielding against neutralizing antibodies. We observed a strikingly decreased infectivity on CD4high target cells, but sustained infectivity on CD4low targets, including macrophages. Intriguingly, the adaptation to CD4low targets altered the kinetic of the entry process, leading to rapid CD4 engagement and an extended transition time between CD4 and CCR5 binding during entry. This phenotype was also observed for certain central nervous system (CNS) derived macrophage-tropic viruses, highlighting that the functional perturbation we defined upon in vitro adaptation to CD4low targets occurs in vivo. Collectively, our findings suggest that CD4low adapted envelopes may exhibit severe deficiencies in entry fitness and shielding early in their evolution. Considering this, adaptation to CD4low targets may preferentially occur in a sheltered and immune-privileged environment such as the CNS to allow fitness restoring compensatory mutations to occur
    corecore