44 research outputs found

    The Role of TLR4 in the Paclitaxel Effects on Neuronal Growth In Vitro

    Get PDF
    Paclitaxel (Pac) is an antitumor agent that is widely used for treatment of solid cancers. While being effective as a chemotherapeutic agent, Pac in high doses is neurotoxic, specifically targeting sensory innervations. In view of these toxic effects associated with conventional chemotherapy, decreasing the dose of Pac has been recently suggested as an alternative approach, which might limit neurotoxicity and immunosuppression. However, it remains unclear if low doses of Pac retain its neurotoxic properties or might exhibit unusual effects on neuronal cells. The goal of this study was to analyze the concentration-dependent effect of Pac on isolated and cultured DRG neuronal cells from wild-type and TLR4 knockout mice. Three different morphological parameters were analyzed: the number of neurons which developed neurites, the number of neurites per cell and the total length of neurites per cell. Our data demonstrate that low concentrations of Pac (0.1 nM and 0.5 nM) do not influence the neuronal growth in cultures in both wild type and TLR4 knockout mice. Higher concentrations of Pac (1-100 nM) had a significant effect on DRG neurons from wild type mice, affecting the number of neurons which developed neurites, number of neurites per cell, and the length of neurites. In DRG from TLR4 knockout mice high concentrations of Pac showed a similar effect on the number of neurons which developed neurites and the length of neurites. At the same time, the number of neurites per cell, indicating the process of growth cone initiation, was not affected by high concentrations of Pac. Thus, our data showed that Pac in high concentrations has a significant damaging effect on axonal growth and that this effect is partially mediated through TLR4 pathways. Low doses of Pac are devoid of neuronal toxicity and thus can be safely used in a chemomodulation mode. © 2013 Ustinova et al

    Positively Selected Codons in Immune-Exposed Loops of the Vaccine Candidate OMP-P1 of Haemophilus influenzae

    Get PDF
    The high levels of variation in surface epitopes can be considered as an evolutionary hallmark of immune selection. New computational tools enable analysis of this variation by identifying codons that exhibit high rates of amino acid changes relative to the synonymous substitution rate. In the outer membrane protein P1 of Haemophilus influenzae, a vaccine candidate for nontypeable strains, we identified four codons with this attribute in domains that did not correspond to known or assumed B- and T-cell epitopes of OMP-P1. These codons flank hypervariable domains and do not appear to be false positives as judged from parsimony and maximum likelihood analyses. Some closely spaced positively selected codons have been previously considered part of a transmembrane domain, which would render this region unsuited for inclusion in a vaccine. Secondary structure analysis, three-dimensional structural database searches, and homology modeling using FadL of E. coli as a structural homologue, however, revealed that all positively selected codons are located in or near extracellular looping domains. The spacing and level of diversity of these positively selected and exposed codons in OMP-P1 suggest that vaccine targets based on these and conserved flanking residues may provide broad coverage in H. influenzae
    corecore