75 research outputs found
Causes of Abnormal Ca2+ Transients in Guinea Pig Pathophysiological Ventricular Muscle Revealed by Ca2+ and Action Potential Imaging at Cellular Level
BACKGROUND: Abnormal Ca(2+) transients are often observed in heart muscles under a variety of pathophysiological conditions including ventricular tachycardia. To clarify whether these abnormal Ca(2+) transients can be attributed to abnormal action potential generation or abnormal Ca(2+) handling/excitation-contraction (EC) coupling, we developed a procedure to determine Ca(2+) and action potential signals at the cellular level in isolated heart tissues. METHODOLOGY/PRINCIPAL FINDINGS: After loading ventricular papillary muscle with rhod-2 and di-4-ANEPPS, mono-wavelength fluorescence images from rhod-2 and ratiometric images of two wavelengths of emission from di-4-ANEPPS were sequentially obtained. To mimic the ventricular tachycardia, the ventricular muscles were field-stimulated in non-flowing Krebs solution which elicited abnormal Ca(2+) transients. For the failed and alternating Ca(2+) transient generation, there were two types of causes, i.e., failed or abnormal action potential generation and abnormal EC coupling. In cells showing delayed initiation of Ca(2+) transients with field stimulation, action potential onset was delayed and the rate of rise was slower than in healthy cells. Similar delayed onset was also observed in the presence of heptanol, an inhibitor of gap junction channels but having a non-specific channel blocking effect. A Na(+) channel blocker, on the other hand, reduced the rate of rise of the action potentials but did not result in desynchronization of the action potentials. The delayed onset of action potentials can be explained primarily by impaired gap junctions and partly by Na(+) channel inactivation. CONCLUSIONS/SIGNIFICANCE: Our results indicate that there are multiple patterns for the causes of abnormal Ca(2+) signals and that our methods are useful for investigating the physiology and pathophysiology of heart muscle
Electrotonic Signals along Intracellular Membranes May Interconnect Dendritic Spines and Nucleus
Synapses on dendritic spines of pyramidal neurons show a remarkable ability to induce phosphorylation of transcription factors at the nuclear level with a short latency, incompatible with a diffusion process from the dendritic spines to the nucleus. To account for these findings, we formulated a novel extension of the classical cable theory by considering the fact that the endoplasmic reticulum (ER) is an effective charge separator, forming an intrinsic compartment that extends from the spine to the nuclear membrane. We use realistic parameters to show that an electrotonic signal may be transmitted along the ER from the dendritic spines to the nucleus. We found that this type of signal transduction can additionally account for the remarkable ability of the cell nucleus to differentiate between depolarizing synaptic signals that originate from the dendritic spines and back-propagating action potentials. This study considers a novel computational role for dendritic spines, and sheds new light on how spines and ER may jointly create an additional level of processing within the single neuron
- β¦