8 research outputs found

    Targeted sequencing of established and candidate colorectal cancer genes in the Colon Cancer Family Registry Cohort

    Get PDF
    The underlying genetic cause of colorectal cancer (CRC) can be identified for 5-10% of all cases, while at least 20% of CRC cases are thought to be due to inherited genetic factors. Screening for highly penetrant mutations in genes associated with Mendelian cancer syndromes using next-generation sequencing (NGS) can be prohibitively expensive for studies requiring large samples sizes. The aim of the study was to identify rare single nucleotide variants and small indels in 40 established or candidate CRC susceptibility genes in 1,046 familial CRC cases (including both MSS and MSI-H tumor subtypes) and 1,006 unrelated controls from the Colon Cancer Family Registry Cohort using a robust and cost-effective DNA pooling NGS strategy. We identified 264 variants in 38 genes that were observed only in cases, comprising either very rare (minor allele frequency <0.001) or not previously reported (n=90, 34%) in reference databases, including six stop-gain, three frameshift, and 255 non-synonymous variants predicted to be damaging. We found novel germline mutations in established CRC genes MLH1, APC, and POLE, and likely pathogenic variants in cancer susceptibility genes BAP1, CDH1, CHEK2, ENG, and MSH3. For the candidate CRC genes, we identified likely pathogenic variants in the helicase domain of POLQ and in the LRIG1, SH2B3, and NOS1 genes and present their clinicopathological characteristics. Using a DNA pooling NGS strategy, we identified novel germline mutations in established CRC susceptibility genes in familial CRC cases. Further studies are required to support the role of POLQ, LRIG1, SH2B3 and NOS1 as CRC susceptibility genes

    Room temperature magnetic materials from nanostructured diblock copolymers

    Full text link
    Nanostructured magnetic materials are important for many advanced applications. Consequently, new methods for their fabrication are critical. However, coupling self-assembly to the generation of magnetic materials in a simple, straight-forward manner has remained elusive. Although several approaches have been considered, most have multiple processing steps, thus diminishing their use of self-assembly to influence magnetic properties. Here we develop novel block copolymers that are preprogrammed with the necessary chemical information to microphase separate and deliver room temperature ferromagnetic properties following a simple heat treatment. The importance of the nanostructured confinement is demonstrated by comparison with the parent homopolymer, which provides only paramagnetic materials, even though it is chemically identical and has a higher loading of the magnetic precursor. In addition to the room temperature ferromagnetic properties originating from the block copolymer, the in situ generation densely functionalizes the surface of the magnetic elements, rendering them oxidatively stable

    Lynch syndrome-associated breast cancers do not overexpress chromosome 11-encoded mucins

    Full text link
    Mismatch repair-deficient breast cancers may be identified in Lynch syndrome mutation carriers, and have clinicopathological features in common with mismatch repair-deficient colorectal and endometrial cancers such as tumour-infiltrating lymphocytes and poor differentiation. Mismatch repair-deficient colorectal cancers frequently show mucinous differentiation associated with upregulation of chromosome 11 mucins. The aim of this study was to compare the protein expression of these mucins in mismatch repair-deficient and -proficient breast cancers. Cases of breast cancer (n=100) were identified from families where (1) both breast and colon cancer co-occurred and (2) families met either modified Amsterdam criteria or had at least one early-onset

    The DNA sequence, annotation and analysis of human chromosome 3

    Full text link

    Polymer–Ceramic Nanohybrid Materials

    Full text link
    This review is dedicated to nanohybrid materials consisting of a polymer-based matrix and a disperse nanoscaled ceramic phase. Different preparation techniques for the synthesis of polymer–ceramic nanohybrid materials will be presented, such as blending techniques, sol–gel processing, in-situ polymerization, and self-assembly methods. Selected structural and functional properties of polymer–ceramic nanohybrid materials will be highlighted and discussed within the context of their dependence on parameters such as the homogeneity of the dispersion of the ceramic throughout the polymer matrix, the particle size of the ceramic phase, and the polymer–ceramic interface. Moreover, some advanced applications of polymer–ceramic nanohybrid materials will be addressed and compared with their polymeric counterparts
    corecore