93 research outputs found

    Natural and human-induced Holocene paleoenvironmental changes on the Guadiana shelf (northern Gulf of Cadiz)

    Get PDF
    Three contrasting sedimentary environments on the continental shelf off the Guadiana River (northern Gulf of Cadiz) were integrated in a chronological framework and analysed in terms of sedimentology and benthic foraminiferal assemblages to understand the Holocene paleoenvironmental evolution. The analysed environments differ in terms of their depositional regimes and benthic foraminiferal assemblages. However, a dominant fluvial origin of the sand fraction was observed in all three environments. Holocene sedimentary processes were mainly controlled by natural (sea level changes and climate variations) and human-induced processes (e.g. deforestation, agriculture) along four evolutionary stages. The three older stages were mainly influenced by natural processes, such as sea level variations and fluvial inputs, whereas the most recent stage reflects a combination of climatic- and human-induced processes. A deepening of sedimentary environments related to a period of rapid sea level rise, strongly influenced by river discharges occurred from c. 11,500 to c. 10,000 cal. yr BP. A reduction in sediment export to the shelf, as a result of the continuous and rapid sea level rise and enhanced estuary infilling reflects the second stage, from c. 10,000 to c. 5000 cal. yr BP. The beginning of the third stage, from c. 5000 to c. 1500–1000 cal. yr BP, is marked by a sea-level slowdown and the relatively stable climate and environmental conditions. The fourth stage, from c. 1500–1000 cal. yr BP to Recent times, reflects the intensification of human-induced processes and climatic variability in the Guadiana River basin. This stage also reflects modern depositional conditions, with the formation of a proximal prodeltaic wedge and a distal muddy body

    The wheat ω-gliadin genes: structure and EST analysis

    Get PDF
    A survey and analysis is made of all available ω-gliadin DNA sequences including ω-gliadin genes within a large genomic clone, previously reported gene sequences, and ESTs identified from the large wheat EST collection. A contiguous portion of the Gli-B3 locus is shown to contain two apparently active ω-gliadin genes, two pseudogenes, and four fragments of the 3′ portion of ω-gliadin sequences. Comparison of ω-gliadin sequences allows a phylogenetic picture of their relationships and genomes of origin. Results show three groupings of ω-gliadin active gene sequences assigned to each of the three hexaploid wheat genomes, and a fourth group thus far consisting of pseudogenes assigned to the A-genome. Analysis of ω-gliadin ESTs allows reconstruction of two full-length model sequences encoding the AREL- and ARQL-type proteins from the Gli-A3 and Gli-D3 loci, respectively. There is no DNA evidence of multiple active genes from these two loci. In contrast, ESTs allow identification of at least three to four distinct active genes at the Gli-B3 locus of some cultivars. Additional results include more information on the position of cysteines in some ω-gliadin genes and discussion of problems in studying the ω-gliadin gene family

    Homology modelling and spectroscopy, a never-ending love story

    Get PDF
    Homology modelling is normally the technique of choice when experimental structure data are not available but three-dimensional coordinates are needed, for example, to aid with detailed interpretation of results of spectroscopic studies. Herein, the state of the art of homology modelling will be described in the light of a series of recent developments, and an overview will be given of the problems and opportunities encountered in this field. The major topic, the accuracy and precision of homology models, will be discussed extensively due to its influence on the reliability of conclusions drawn from the combination of homology models and spectroscopic data. Three real-world examples will illustrate how both homology modelling and spectroscopy can be beneficial for (bio)medical research

    Trace analysis of environmental matrices by large-volume injection and liquid chromatography-mass spectrometry

    Get PDF
    The time-honored convention of concentrating aqueous samples by solid-phase extraction (SPE) is being challenged by the increasingly widespread use of large-volume injection (LVI) liquid chromatography–mass spectrometry (LC–MS) for the determination of traces of polar organic contaminants in environmental samples. Although different LVI approaches have been proposed over the last 40 years, the simplest and most popular way of performing LVI is known as single-column LVI (SC-LVI), in which a large-volume of an aqueous sample is directly injected into an analytical column. For the purposes of this critical review, LVI is defined as an injected sample volume that is ≥10% of the void volume of the analytical column. Compared with other techniques, SC-LVI is easier to set up, because it requires only small hardware modifications to existing autosamplers and, thus, it will be the main focus of this review. Although not new, SC-LVI is gaining acceptance and the approach is emerging as a technique that will render SPE nearly obsolete for many environmental applications.In this review, we discuss: the history and development of various forms of LVI; the critical factors that must be considered when creating and optimizing SC-LVI methods; and typical applications that demonstrate the range of environmental matrices to which LVI is applicable, for example drinking water, groundwater, and surface water including seawater and wastewater. Furthermore, we indicate direction and areas that must be addressed to fully delineate the limits of SC-LVI

    Fructan and its relationship to abiotic stress tolerance in plants

    Get PDF
    Numerous studies have been published that attempted to correlate fructan concentrations with freezing and drought tolerance. Studies investigating the effect of fructan on liposomes indicated that a direct interaction between membranes and fructan was possible. This new area of research began to move fructan and its association with stress beyond mere correlation by confirming that fructan has the capacity to stabilize membranes during drying by inserting at least part of the polysaccharide into the lipid headgroup region of the membrane. This helps prevent leakage when water is removed from the system either during freezing or drought. When plants were transformed with the ability to synthesize fructan, a concomitant increase in drought and/or freezing tolerance was confirmed. These experiments indicate that besides an indirect effect of supplying tissues with hexose sugars, fructan has a direct protective effect that can be demonstrated by both model systems and genetic transformation

    Brachypodium distachyon as a model for defining the allergen potential of non-prolamin proteins

    Get PDF
    Epitope databases and the protein sequences of published plant genomes are suitable to identify some of the proteins causing food allergies and sensitivities. Brachypodium distachyon, a diploid wild grass with a sequenced genome and low prolamin content, is the closest relative of the allergen cereals, such as wheat or barley. Using the Brachypodium genome sequence, a workflow has been developed to identify potentially harmful proteins which may cause either celiac disease or wheat allergy-related symptoms. Seed tissue-specific expression of the potential allergens has been determined, and intact epitopes following an in silico digestion with several endopeptidases have been identified. Molecular function of allergen proteins has been evaluated using Gene Ontology terms. Biologically overrepresented proteins and potentially allergen protein families have been identified. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10142-012-0294-z) contains supplementary material, which is available to authorized users
    corecore