11,906 research outputs found
Kinematic stability of roller pairs in free rolling contact
A set of generalized stability equations was developed for roller pairs in free rolling contact. A symmetric, dual contact model was used. Four possible external contact profiles that possess continuous contacting surfaces were studied. It was found that kinematic stability would be insured if the larger radius of transverse curvature, in absolute value, and the smaller rolling radius both exist on the roller that has the apex of its conical surface outboard of its main body. The stability criteria developed are considered to be useful for assessing axial restraint requirements for a variety of roller mechanisms and in the selection of roller contact geometry for traction drive devices
Maximum life spiral bevel reduction design
Optimization is applied to the design of a spiral bevel gear reduction for maximum life at a given size. A modified feasible directions search algorithm permits a wide variety of inequality constraints and exact design requirements to be met with low sensitivity to initial values. Gear tooth bending strength and minimum contact ratio under load are included in the active constraints. The optimal design of the spiral bevel gear reduction includes the selection of bearing and shaft proportions in addition to gear mesh parameters. System life is maximized subject to a fixed back-cone distance of the spiral bevel gear set for a specified speed ratio, shaft angle, input torque, and power. Significant parameters in the design are: the spiral angle, the pressure angle, the numbers of teeth on the pinion and gear, and the location and size of the four support bearings. Interpolated polynomials expand the discrete bearing properties and proportions into continuous variables for gradient optimization. After finding the continuous optimum, a designer can analyze near optimal designs for comparison and selection. Design examples show the influence of the bearing lives on the gear parameters in the optimal configurations. For a fixed back-cone distance, optimal designs with larger shaft angles have larger service lives
Roller bearing geometry design
A theory of kinematic stabilization of rolling cylinders is extended and applied to the design of cylindrical roller bearings. The kinematic stabilization mechanism puts a reverse skew into the rolling elements by changing the roller taper. Twelve basic bearing modification designs are identified amd modeled. Four have single transverse convex curvature in their rollers while eight have rollers which have compound transverse curvature made up of a central cylindrical band surrounded by symmetric bands with slope and transverse curvature. The bearing designs are modeled for restoring torque per unit axial displacement, contact stress capacity, and contact area including dynamic loading, misalignment sensitivity and roller proportion. Design programs are available which size the single transverse curvature roller designs for a series of roller slopes and load separations and which design the compound roller bearings for a series of slopes and transverse radii of curvature. The compound rollers are proportioned to have equal contact stresses and minimum size. Design examples are also given
Maximum life spur gear design
Optimization procedures allow one to design a spur gear reduction for maximum life and other end use criteria. A modified feasible directions search algorithm permits a wide variety of inequality constraints and exact design requirements to be met with low sensitivity to initial guess values. The optimization algorithm is described, and the models for gear life and performance are presented. The algorithm is compact and has been programmed for execution on a desk top computer. Two examples are presented to illustrate the method and its application
O VI and Multicomponent H I Absorption Associated with a Galaxy Group in the Direction of PG0953+415: Physical Conditions and Baryonic Content
We report the discovery of an O VI absorption system at z(abs) = 0.14232 in a
high resolution FUV spectrum of PG0953+415 obtained with the Space Telescope
Imaging Spectrograph (STIS). Both lines of the O VI 1032, 1038 doublet and
multicomponent H I Lya absorption are detected, but the N V doublet and the
strong lines of C II and Si III are not apparent. We examine the ionization
mechanism of the O VI absorber and find that while theoretical considerations
favor collisional ionization, it is difficult to observationally rule out
photoionization. If the absorber is collisionally ionized, it may not be in
equilibrium due to the rapid cooling of gas in the appropriate temperature
range. Non-equilibrium collisionally ionized models are shown to be consistent
with the observations. A WIYN survey of galaxy redshifts near the sight line
has revealed a galaxy at a projected distance of 395 kpc separated by ~130 km/s
from this absorber, and three additional galaxies are found within 130 km/s of
this redshift with projected separations ranging from 1.0 Mpc to 3.0 Mpc.
Combining the STIS observations of PG0953+415 with previous high S/N GHRS
observations of H1821+643, we derive a large number of O VI absorbers per unit
redshift, dN/dz ~20. We use this sample to obtain a first estimate of the
cosmological mass density of the O VI systems at z ~ 0. If further observations
confirm the large dN/dz derived for the O VI systems, then these absorbers
trace a significant reservoir of baryonic matter at low redshift.Comment: Accepted for publication in Ap.J., vol. 542 (Oct. 10, 2000
On Characterizing the Data Access Complexity of Programs
Technology trends will cause data movement to account for the majority of
energy expenditure and execution time on emerging computers. Therefore,
computational complexity will no longer be a sufficient metric for comparing
algorithms, and a fundamental characterization of data access complexity will
be increasingly important. The problem of developing lower bounds for data
access complexity has been modeled using the formalism of Hong & Kung's
red/blue pebble game for computational directed acyclic graphs (CDAGs).
However, previously developed approaches to lower bounds analysis for the
red/blue pebble game are very limited in effectiveness when applied to CDAGs of
real programs, with computations comprised of multiple sub-computations with
differing DAG structure. We address this problem by developing an approach for
effectively composing lower bounds based on graph decomposition. We also
develop a static analysis algorithm to derive the asymptotic data-access lower
bounds of programs, as a function of the problem size and cache size
Heap Formation in Granular Media
Using molecular dynamics (MD) simulations, we find the formation of heaps in
a system of granular particles contained in a box with oscillating bottom and
fixed sidewalls. The simulation includes the effect of static friction, which
is found to be crucial in maintaining a stable heap. We also find another
mechanism for heap formation in systems under constant vertical shear. In both
systems, heaps are formed due to a net downward shear by the sidewalls. We
discuss the origin of net downward shear for the vibration induced heap.Comment: 11 pages, 4 figures available upon request, Plain TeX, HLRZ-101/9
Lattice QCD study of a five-quark hadronic molecule
We compute the ground-state energies of a heavy-light K-Lambda like system as
a function of the relative distance r of the hadrons. The heavy quarks, one in
each hadron, are treated as static. Then, the energies give rise to an
adiabatic potential Va(r) which we use to study the structure of the five-quark
system. The simulation is based on an anisotropic and asymmetric lattice with
Wilson fermions. Energies are extracted from spectral density functions
obtained with the maximum entropy method. Our results are meant to give
qualitative insight: Using the resulting adiabatic potential in a Schroedinger
equation produces bound state wave functions which indicate that the ground
state of the five-quark system resembles a hadronic molecule, whereas the first
excited state, having a very small rms radius, is probably better described as
a five-quark cluster, or a pentaquark. We hypothesize that an all light-quark
pentaquark may not exist, but in the heavy-quark sector it might, albeit only
as an excited state.Comment: 11 pages, 15 figures, 4 table
Low Redshift Intergalactic Absorption Lines in the Spectrum of HE0226-4110
We present an analysis of the FUSE and STIS E140M spectra of HE0226-4110
(z=0.495). We detect 56 Lyman absorbers and 5 O VI absorbers. The number of
intervening O VI systems per unit redshift with W>50 m\AA is dN(O VI)/dz~ 11.
The O VI systems unambiguously trace hot gas only in one case. For the 4 other
O VI systems, photoionization and collisional ionization models are viable
options to explain the observed column densities of the O VI and the other
ions. If the O VI systems are mostly photoionized, only a fraction of the
observed O VI will contribute to the baryonic density of the warm-hot ionized
medium (WHIM) along this line of sight. Combining our results with previous
ones, we show that there is a general increase of N(O VI) with increasing b(O
VI). Cooling flow models can reproduce the N-b distribution but fail to
reproduce the observed ionic ratios. A comparison of the number of O I, O II, O
III, O IV, and O VI systems per unit redshift show that the low-z IGM is more
highly ionized than weakly ionized. We confirm that photoionized O VI systems
show a decreasing ionization parameter with increasing H I column density. O VI
absorbers with collisional ionization/photoionization degeneracy follow this
relation, possibly suggesting that they are principally photoionized. We find
that the photoionized O VI systems in the low redshift IGM have a median
abundance of 0.3 solar. We do not find additional Ne VIII systems other than
the one found by Savage et al., although our sensitivity should have allowed
the detection of Ne VIII in O VI systems at T~(0.6-1.3)x10^6 K (if CIE
applies). Since the bulk of the WHIM is believed to be at temperatures T>10^6
K, the hot part of the WHIM remains to be discovered with FUV--EUV metal-line
transitions.Comment: Accepted for publication in the ApJS. Full resolution figures
available at
http://www.journals.uchicago.edu/ApJ/journal/preprints/ApJS63975.preprint.pd
- …