920 research outputs found

    Development of motor cooperation through joint-action in middle childhood: a behavioral study

    Get PDF
    The development of the abilities to behave in a joint-action so far has been investigated only in infants and preschoolers (Tollefsen, 2005; Brownell et al. 2006). To our knowledge, no experiments have been carried out yet to investigate how and when the ability related to successfully perform a joint-action does develop during middle childhood. Since this developmental period is critical for the large changes in motor dexterity, cognition, and sociality (Hartup, 1984; Fischer & Silvern, 1985; Hale, 1990), we thought that it would have been also crucial for the refinement of those skills required for complex forms of motor coordination, such as those required during joint-action. Thus, we tested couples of age- and gender-matched children (5-9 years) and adults while they performed a center-out videogame, in which the same action (moving a cursor on a screen through an individual isometric joystick) could be performed i) alone, ii) in a coordinate fashion with the partner (joint-action task), iii) coordinating with a computer, which reproduced the partner’s trajectories. It was found that the performance in the joint-action task improved during development, but that there was a critical “jump” between 7-8 years, in which the performance during the joint-action improved rapidly, reaching for most parameters the level of adults at 9 years . Importantly, the increase in the joint-action performance did not simply reflect the maturation of the motor skills underlying single-action. Since 7-8 years, the performance benefited from the presence of an interaction with a real partner (“cooperation benefit”), as compared to the simple coordination with the computer. The analysis of spatial-temporal parameters of behavior showed the presence of a shift in the strategies for the movement control during the joint-action, from feedforward (around 6 years) to feedback-based (around 9 years). We thought that older children gradually learned to adjust their movements with respect to those of their partners through the use of feedback corrections, which allowed them to perform an online control of their partners’ trajectories, a strategy made possible by the long movement times that characterized the task performance. The cognitive development and the changes in motor control occurring around 7-8 years are discussed as possible factors mediating the growth in the fine motor adjustment responsible of the improvement in the joint performance

    Studies on Phytoplasma Seed Transmission in Different Biological Systems

    Get PDF
    The transmission of phytoplasmas by seed in Sesamum indicum, Brassica napus, Solanum lycopersicum and Zea mays, was studied. The seeds, derived from infected mother-plants, were sown in sterile substrates and their germination percentage was evaluated. The seedlings were analyzed for the presence of phytoplasmas in different stages of growth by "nested"-PCR/RFLP analysis. The four species resulted positive for phytoplasmas belonging to different ribosomal groups and the number of positive plants decreased in the later stages of growth. For S. lycopersicum samples the presence of phytoplasmas was also analyzed in second generation plants: 7 seedlings out of the 60 tested resulted positive for phytoplasmas. Phytoplasma isolation in artificial medium CB was performed for all samples resulted positive, to verify the viability of the phytoplasmas. From Z. mays samples, colonies positive to phytoplasmas belonging to ribosomal groups 16SrI and 16SrXII were obtained. These colonies positive to 16SrI were reproducible for at least three subsequent passages liquid/solid media carried out every 5 days. Some of these samples produced colonies also from broth maintained for seven months at 25°C after isolation. These preliminary results indicate the viability of 16SrI phytoplasmas isolated from corn seedlings and confirm seed transmission of viable phytoplasmas. A quantitative PCR assay with SYBR Green chemistry, with generic "primers" to detect phytoplasmas belonging to different ribosomal groups was successfully applied both to seedlings and symptomatic field infected plants. Contrasting results were obtained from phytoplasma in liquid media and colonies. This technique demonstrated high sensitivity for phytoplasma at low concentrations and high specificity for the Mollicutes that can be differentiated from non- Mollicutes by the analysis of melting temperatures. In carrot samples from Gran Canaria Island (Spain), symptoms of shoot and root malformation were observed. ‘Candidatus Liberibacter solanacearum’, haplotype D, and phytoplasmas belonging to the ribosomal group 16SrI were detected

    Simultaneous detection of mixed ‘Candidatus Phytoplasma asteris’ and ‘Ca. Liberibacter solanacearum’ infection in carrot

    Get PDF
    Symptoms of shoot and root malformation were observed in carrot plants in fields located in the North of Gran Canaria Island (Spain), during surveys carried out in spring 2015 and 2016. Total DNA extraction from the leaves of symptomatic plants was performed and PCR assays were carried out to detect the agents possibly associated to the observed symptoms. While ‘Candidatus Liberibacter solanacearum’ was detected in the majority of tested symptomatic samples, phytoplasmas belonging to the ribosomal group 16SrI were detected only in two samples. Phylogenetic analyses and sequencing, together with virtual RFLP, confirmed that ‘Ca. L. solanacearum’ strains detected in carrot samples belong to haplotype D

    Variants within the immunoregulatory CBLB gene are associated with multiple sclerosis

    Get PDF
    A genome wide association scan of ~6.6 million genotyped or imputed variants in 882 Sardinian Multiple Sclerosis (MS) cases and 872 controls suggested association of CBLB gene variants with disease, which was confirmed in 1,775 cases and 2,005 controls (overall P =1.60 × 10-10). CBLB encodes a negative regulator of adaptive immune responses and mice lacking the orthologue are prone to experimental autoimmune encephalomyelitis, the animal model of MS

    Les droits disciplinaires des fonctions publiques : « unification », « harmonisation » ou « distanciation ». A propos de la loi du 26 avril 2016 relative à la déontologie et aux droits et obligations des fonctionnaires

    Get PDF
    The production of tt‟ , W+bb‟ and W+cc‟ is studied in the forward region of proton–proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98±0.02 fb−1 . The W bosons are reconstructed in the decays W→ℓΜ , where ℓ denotes muon or electron, while the b and c quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions.The production of tt‟t\overline{t}, W+bb‟W+b\overline{b} and W+cc‟W+c\overline{c} is studied in the forward region of proton-proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98 ±\pm 0.02 \mbox{fb}^{-1}. The WW bosons are reconstructed in the decays W→ℓΜW\rightarrow\ell\nu, where ℓ\ell denotes muon or electron, while the bb and cc quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions

    Physics case for an LHCb Upgrade II - Opportunities in flavour physics, and beyond, in the HL-LHC era

    Get PDF
    The LHCb Upgrade II will fully exploit the flavour-physics opportunities of the HL-LHC, and study additional physics topics that take advantage of the forward acceptance of the LHCb spectrometer. The LHCb Upgrade I will begin operation in 2020. Consolidation will occur, and modest enhancements of the Upgrade I detector will be installed, in Long Shutdown 3 of the LHC (2025) and these are discussed here. The main Upgrade II detector will be installed in long shutdown 4 of the LHC (2030) and will build on the strengths of the current LHCb experiment and the Upgrade I. It will operate at a luminosity up to 2×1034 cm−2s−1, ten times that of the Upgrade I detector. New detector components will improve the intrinsic performance of the experiment in certain key areas. An Expression Of Interest proposing Upgrade II was submitted in February 2017. The physics case for the Upgrade II is presented here in more depth. CP-violating phases will be measured with precisions unattainable at any other envisaged facility. The experiment will probe b → sl+l−and b → dl+l− transitions in both muon and electron decays in modes not accessible at Upgrade I. Minimal flavour violation will be tested with a precision measurement of the ratio of B(B0 → ÎŒ+Ό−)/B(Bs → ÎŒ+Ό−). Probing charm CP violation at the 10−5 level may result in its long sought discovery. Major advances in hadron spectroscopy will be possible, which will be powerful probes of low energy QCD. Upgrade II potentially will have the highest sensitivity of all the LHC experiments on the Higgs to charm-quark couplings. Generically, the new physics mass scale probed, for fixed couplings, will almost double compared with the pre-HL-LHC era; this extended reach for flavour physics is similar to that which would be achieved by the HE-LHC proposal for the energy frontier

    LHCb upgrade software and computing : technical design report

    Get PDF
    This document reports the Research and Development activities that are carried out in the software and computing domains in view of the upgrade of the LHCb experiment. The implementation of a full software trigger implies major changes in the core software framework, in the event data model, and in the reconstruction algorithms. The increase of the data volumes for both real and simulated datasets requires a corresponding scaling of the distributed computing infrastructure. An implementation plan in both domains is presented, together with a risk assessment analysis

    Multidifferential study of identified charged hadron distributions in ZZ-tagged jets in proton-proton collisions at s=\sqrt{s}=13 TeV

    Full text link
    Jet fragmentation functions are measured for the first time in proton-proton collisions for charged pions, kaons, and protons within jets recoiling against a ZZ boson. The charged-hadron distributions are studied longitudinally and transversely to the jet direction for jets with transverse momentum 20 <pT<100< p_{\textrm{T}} < 100 GeV and in the pseudorapidity range 2.5<η<42.5 < \eta < 4. The data sample was collected with the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 1.64 fb−1^{-1}. Triple differential distributions as a function of the hadron longitudinal momentum fraction, hadron transverse momentum, and jet transverse momentum are also measured for the first time. This helps constrain transverse-momentum-dependent fragmentation functions. Differences in the shapes and magnitudes of the measured distributions for the different hadron species provide insights into the hadronization process for jets predominantly initiated by light quarks.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-013.html (LHCb public pages

    Study of the B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} decay

    Full text link
    The decay B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} is studied in proton-proton collisions at a center-of-mass energy of s=13\sqrt{s}=13 TeV using data corresponding to an integrated luminosity of 5 fb−1\mathrm{fb}^{-1} collected by the LHCb experiment. In the Λc+K−\Lambda_{c}^+ K^{-} system, the Ξc(2930)0\Xi_{c}(2930)^{0} state observed at the BaBar and Belle experiments is resolved into two narrower states, Ξc(2923)0\Xi_{c}(2923)^{0} and Ξc(2939)0\Xi_{c}(2939)^{0}, whose masses and widths are measured to be m(Ξc(2923)0)=2924.5±0.4±1.1 MeV,m(Ξc(2939)0)=2938.5±0.9±2.3 MeV,Γ(Ξc(2923)0)=0004.8±0.9±1.5 MeV,Γ(Ξc(2939)0)=0011.0±1.9±7.5 MeV, m(\Xi_{c}(2923)^{0}) = 2924.5 \pm 0.4 \pm 1.1 \,\mathrm{MeV}, \\ m(\Xi_{c}(2939)^{0}) = 2938.5 \pm 0.9 \pm 2.3 \,\mathrm{MeV}, \\ \Gamma(\Xi_{c}(2923)^{0}) = \phantom{000}4.8 \pm 0.9 \pm 1.5 \,\mathrm{MeV},\\ \Gamma(\Xi_{c}(2939)^{0}) = \phantom{00}11.0 \pm 1.9 \pm 7.5 \,\mathrm{MeV}, where the first uncertainties are statistical and the second systematic. The results are consistent with a previous LHCb measurement using a prompt Λc+K−\Lambda_{c}^{+} K^{-} sample. Evidence of a new Ξc(2880)0\Xi_{c}(2880)^{0} state is found with a local significance of 3.8 σ3.8\,\sigma, whose mass and width are measured to be 2881.8±3.1±8.5 MeV2881.8 \pm 3.1 \pm 8.5\,\mathrm{MeV} and 12.4±5.3±5.8 MeV12.4 \pm 5.3 \pm 5.8 \,\mathrm{MeV}, respectively. In addition, evidence of a new decay mode Ξc(2790)0→Λc+K−\Xi_{c}(2790)^{0} \to \Lambda_{c}^{+} K^{-} is found with a significance of 3.7 σ3.7\,\sigma. The relative branching fraction of B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} with respect to the B−→D+D−K−B^{-} \to D^{+} D^{-} K^{-} decay is measured to be 2.36±0.11±0.22±0.252.36 \pm 0.11 \pm 0.22 \pm 0.25, where the first uncertainty is statistical, the second systematic and the third originates from the branching fractions of charm hadron decays.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-028.html (LHCb public pages

    Measurement of the ratios of branching fractions R(D∗)\mathcal{R}(D^{*}) and R(D0)\mathcal{R}(D^{0})

    Full text link
    The ratios of branching fractions R(D∗)≡B(Bˉ→D∗τ−Μˉτ)/B(Bˉ→D∗Ό−ΜˉΌ)\mathcal{R}(D^{*})\equiv\mathcal{B}(\bar{B}\to D^{*}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(\bar{B}\to D^{*}\mu^{-}\bar{\nu}_{\mu}) and R(D0)≡B(B−→D0τ−Μˉτ)/B(B−→D0Ό−ΜˉΌ)\mathcal{R}(D^{0})\equiv\mathcal{B}(B^{-}\to D^{0}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(B^{-}\to D^{0}\mu^{-}\bar{\nu}_{\mu}) are measured, assuming isospin symmetry, using a sample of proton-proton collision data corresponding to 3.0 fb−1{ }^{-1} of integrated luminosity recorded by the LHCb experiment during 2011 and 2012. The tau lepton is identified in the decay mode τ−→Ό−ΜτΜˉΌ\tau^{-}\to\mu^{-}\nu_{\tau}\bar{\nu}_{\mu}. The measured values are R(D∗)=0.281±0.018±0.024\mathcal{R}(D^{*})=0.281\pm0.018\pm0.024 and R(D0)=0.441±0.060±0.066\mathcal{R}(D^{0})=0.441\pm0.060\pm0.066, where the first uncertainty is statistical and the second is systematic. The correlation between these measurements is ρ=−0.43\rho=-0.43. Results are consistent with the current average of these quantities and are at a combined 1.9 standard deviations from the predictions based on lepton flavor universality in the Standard Model.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-039.html (LHCb public pages
    • 

    corecore