67 research outputs found

    Non-orientable genus of a knot in punctured CP2\mathbb{C}P ^2

    Full text link
    For any knot KK which bounds non-orientable and null-homologous surfaces FF in punctured nCP2n\mathbb{C}P^2, we construct a lower bound of the first Betti number of FF which consists of the signature of KK and the Heegaard Floer dd-invariant of the integer homology sphere obtained by 11-surgery along KK. By using this lower bound, we prove that for any integer kk, a certain knot cannot bound any surface which satisfies the above conditions and whose first Betti number is less than kk.Comment: 11 pages, 6 figure

    Supramolecular Complexation of \u3cem\u3eN\u3c/em\u3e-Alkyl- and \u3cem\u3eN\u3c/em\u3e,\u3cem\u3eN\u3c/em\u3e′-Dialkylpiperazines with Cucurbit[6]uril in Aqueous Solution and in the Solid State

    Get PDF
    Water seeds: Complex stoichiometry/composition and degree of oligomerization (oligomeric supramolecular complex formation) of cucurbit[6]uril (CB[6]) with N-alkyl- and N,N′-dialkylpiperazine were investigated in aqueous solutions by means of isothermal titration calorimetry (ITC), ESI-MS, NMR and light scattering measurements. Complex stoichiometry/composition and degree of oligomerization (oligomeric supramolecular complex formation) of cucurbit[6]uril (CB[6]) with N-alkyl- and N,N′-dialkylpiperazine were investigated in aqueous solutions by means of isothermal titration calorimetry (ITC), ESI-MS, NMR and light scattering measurements. It was found that the complex stability and the degree of oligomerization increase with elongating the alkyl chain attached to the piperazine core. X-ray crystallographic studies revealed a clear correlation between the structure of CB[6]–alkylpiperazine crystals obtained from aqueous solutions and the molecular weight/properties of host–guest oligomers existed in the solution as supramolecular “seeds” of crystal formation

    Poly[[hexa-μ-cyanido-manganese(II)iron(III)] penta­hydrate]

    Get PDF
    The structure of the title compound, MnII[FeIII(CN)6]2/3·5H2O, features a face-centered cubic –Mn—NC—Fe– framework with both Mn and Fe having site symmetry m m. Since one-third of the [Fe(CN)6]3− units are missing for a given formula in order to maintain charge neutrality, each Mn atom around such a vacancy is coordinated not only by the N atoms of the CN groups but also by the O atoms of the ligand water mol­ecules. In addition to ligand water mol­ecules, two types of non-coordinated water mol­ecules, so-called zeolitic water mol­ecules, exist in the inter­stitial sites of the –Mn—NC—Fe– framework. The positions of the O atoms of the zeolitic water mol­ecules are fixed by the linkage via hydrogen bonds between ligand water and zeolitic water mol­ecules. The structure is related to a recently reported rubidium manganese hexa­cyano­ferrate. Site occupancy factors for Fe, C, N are 0.67; for two O atoms the value is 0.83 and for one O atom is 0.17

    Aberrant Glycogen Synthase Kinase 3β Is Involved in Pancreatic Cancer Cell Invasion and Resistance to Therapy

    Get PDF
    Background and Purpose: The major obstacles to treatment of pancreatic cancer are the highly invasive capacity and resistance to chemo- and radiotherapy. Glycogen synthase kinase 3β (GSK3β) regulates multiple cellular pathways and is implicated in various diseases including cancer. Here we investigate a pathological role for GSK3β in the invasive and treatment resistant phenotype of pancreatic cancer. Methods: Pancreatic cancer cells were examined for GSK3β expression, phosphorylation and activity using Western blotting and in vitro kinase assay. The effects of GSK3β inhibition on cancer cell survival, proliferation, invasive ability and susceptibility to gemcitabine and radiation were examined following treatment with a pharmacological inhibitor or by RNA interference. Effects of GSK3β inhibition on cancer cell xenografts were also examined. Results: Pancreatic cancer cells showed higher expression and activity of GSK3β than non-neoplastic cells, which were associated with changes in its differential phosphorylation. Inhibition of GSK3β significantly reduced the proliferation and survival of cancer cells, sensitized them to gemcitabine and ionizing radiation, and attenuated their migration and invasion. These effects were associated with decreases in cyclin D1 expression and Rb phosphorylation. Inhibition of GSK3β also altered the subcellular localization of Rac1 and F-actin and the cellular microarchitecture, including lamellipodia. Coincident with these changes were the reduced secretion of matrix metalloproteinase-2 (MMP-2) and decreased phosphorylation of focal adhesion kinase (FAK). The effects of GSK3β inhibition on tumor invasion, susceptibility to gemcitabine, MMP-2 expression and FAK phosphorylation were observed in tumor xenografts. Conclusion: The targeting of GSK3β represents an effective strategy to overcome the dual challenges of invasiveness and treatment resistance in pancreatic cancer. © 2013 Kitano et al

    Hyper-IgG4 disease: report and characterisation of a new disease

    Get PDF
    BACKGROUND: We highlight a chronic inflammatory disease we call 'hyper-IgG4 disease', which has many synonyms depending on the organ involved, the country of origin and the year of the report. It is characterized histologically by a lymphoplasmacytic inflammation with IgG4-positive cells and exuberant fibrosis, which leaves dense fibrosis on resolution. A typical example is idiopathic retroperitoneal fibrosis, but the initial report in 2001 was of sclerosing pancreatitis. METHODS: We report an index case with fever and severe systemic disease. We have also reviewed the histology of 11 further patients with idiopathic retroperitoneal fibrosis for evidence of IgG4-expressing plasma cells, and examined a wide range of other inflammatory conditions and fibrotic diseases as organ-specific controls. We have reviewed the published literature for disease associations with idiopathic, systemic fibrosing conditions and the synonyms: pseudotumour, myofibroblastic tumour, plasma cell granuloma, systemic fibrosis, xanthofibrogranulomatosis, and multifocal fibrosclerosis. RESULTS: Histology from all 12 patients showed, to varying degrees, fibrosis, intense inflammatory cell infiltration with lymphocytes, plasma cells, scattered neutrophils, and sometimes eosinophilic aggregates, with venulitis and obliterative arteritis. The majority of lymphocytes were T cells that expressed CD8 and CD4, with scattered B-cell-rich small lymphoid follicles. In all cases, there was a significant increase in IgG4-positive plasma cells compared with controls. In two cases, biopsies before and after steroid treatment were available, and only scattered plasma cells were seen after treatment, none of them expressing IgG4. Review of the literature shows that although pathology commonly appears confined to one organ, patients can have systemic symptoms and fever. In the active period, there is an acute phase response with a high serum concentration of IgG, and during this phase, there is a rapid clinical response to glucocorticoid steroid treatment. CONCLUSION: We believe that hyper-IgG4 disease is an important condition to recognise, as the diagnosis can be readily verified and the outcome with treatment is very good

    Graphite Pollusion Mechanism at the Surface of Steel Sheet on Annealing

    No full text

    Total Synthesis and Cytotoxicity of Haterumalides NA and B and Their Artificial Analogues

    No full text
    corecore