13 research outputs found

    Evaluating the role of puckering and fluorine atom in stability and folding of fluoroproline containing proteins

    No full text
    In the past decade, numerous studies have been reported that the residue specific incorporation of fluorine containing analogs into protein can enhance the stability of protein. On the other hand, the incorporation of fluoroproline can enhance both stability and refolding rate of recombinant proteins. The objective of this study was to determine the reason behind the enhanced stability and refolding rate of protein by comparing GFP variants containing fluoroproline or hydroxyproline. The fluorine atom of 4-fluoroproline played a significant role in enhancing stability, and Cγ-endo puckering property of (4S)-4-fluoroproline and (4S)-4-hydroxyproline plays a key role in enhancing protein refolding rate

    Protein engineering for covalent immobilization and enhanced stability through incorporation of multiple noncanonical amino acids

    No full text
    In this study, we demonstrate the application of multiple functional properties of proteins generated through coupling of residue-specific and site-specific incorporation method. With green fluorescent protein (GFP) as a model protein, we constructed multifunctional GFP through sitespecific incorporation of L-3,4-dihydroxyphenylalanine (DOPA) and residue-specific incorporation of (2S, 4S)-4- fluoroproline (4S-FP) or L-homopropargylglycine (hpg). Fluorescence analysis revealed a conjugation efficiency of approximately 20% for conjugation of DOPA-containing variants GFPdopa, GFPdp[4S-FP], and GFPdphpg onto chitosan. While incorporation of 4S-FP improved protein folding and stability, hpg incorporation into GFP allowed conjugation with fluorescent dye/polyethylene glycol (PEG). In addition, the modification of GFPhpg and GFPdphpg with PEG through Cu(I)-catalyzed click reaction increased protein thermal stability by about two-fold of the wild-type GFP

    Biotransformation of beta-keto nitriles to chiral (S)-beta-amino acids using nitrilase and omega-transaminase

    Get PDF
    Objective To enzymatically synthesize enantiomerically pure beta-amino acids from beta-keto nitriles using nitrilase and omega-transaminase. Results An enzyme cascade system was designed where in beta-keto nitriles are initially hydrolyzed to beta-keto acids using nitrilase from Bradyrhizobium japonicum and subsequently beta-keto acids were converted to beta-amino acids using omega-transaminases. Five different omega-transaminases were tested for this cascade reaction, To enhance the yields of beta-amino acids, the concentrations of nitrilase and amino donor were optimized. Using this enzymatic reaction, enantiomerically pure (S)-beta-amino acids (ee > 99%) were generated. As nitrilase is the bottleneck in this reaction, molecular docking analysis was carried out to depict the poor affinity of nitrilase towards beta-keto acids. Conclusions A novel enzymatic route to generate enantiomerically pure aromatic (S)-beta-amino acids from beta-keto nitriles is demonstrated for the first time

    Fungal cytochrome P450 monooxygenases of Fusarium oxysporum for the synthesis of ω-hydroxy fatty acids in engineered Saccharomyces cerevisiae

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.Abstract Background Omega hydroxy fatty acids (ω-OHFAs) are multifunctional compounds that act as the basis for the production of various industrial products with broad commercial and pharmaceutical implications. However, the terminal oxygenation of saturated or unsaturated fatty acids for the synthesis of ω-OHFAs is intricate to accomplish through chemocatalysis, due to the selectivity and controlled reactivity in C-H oxygenation reactions. Cytochrome P450, the ubiquitous enzyme is capable of catalyzing the selective terminal omega hydroxylation naturally in biological kingdom. Results To gain a deep insight on the biochemical role of fungal P450s towards the production of omega hydroxy fatty acids, two cytochrome P450 monooxygenases from Fusarium oxysporum (FoCYP), FoCYP539A7 and FoCYP655C2; were identified, cloned, and heterologously expressed in Saccharomyces cerevisiae. For the efficient production of ω-OHFAs, the S. cerevisiae was engineered to disrupt the acyl-CoA oxidase enzyme and the β-oxidation pathway inactivated (ΔPox1) S. cerevisiae mutant was generated. To elucidate the significance of the interaction of redox mechanism, FoCYPs were reconstituted with the heterologous and homologous reductase systems - S. cerevisiae CPR (ScCPR) and F. oxysporum CPR (FoCPR). To further improve the yield, the effect of pH was analyzed and the homologous FoCYP-FoCPR system efficiently hydroxylated caprylic acid, capric acid and lauric acid into their respective ω-hydroxy fatty acids with 56%, 79% and 67% conversion. Furthermore, based on computational simulations, we identified the key residues (Asn106 of FoCYP539A7 and Arg235 of FoCYP655C2) responsible for the recognition of fatty acids and demonstrated the structural insights of the active site of FoCYPs. Conclusion Fungal CYP monooxygenases, FoCYP539A7 and FoCYP655C2 with its homologous redox partner, FoCPR constitutes a promising catalyst due to its high regio- and stereo-selectivity in the hydroxylation of fatty acids and in the substantial production of industrially valuable ω-hydroxy fatty acids

    Rewriting the Metabolic Blueprint: Advances in Pathway Diversification in Microorganisms

    No full text
    Living organisms have evolved over millions of years to fine tune their metabolism to create efficient pathways for producing metabolites necessary for their survival. Advancement in the field of synthetic biology has enabled the exploitation of these metabolic pathways for the production of desired compounds by creating microbial cell factories through metabolic engineering, thus providing sustainable routes to obtain value-added chemicals. Following the past success in metabolic engineering, there is increasing interest in diversifying natural metabolic pathways to construct non-natural biosynthesis routes, thereby creating possibilities for producing novel valuable compounds that are non-natural or without elucidated biosynthesis pathways. Thus, the range of chemicals that can be produced by biological systems can be expanded to meet the demands of industries for compounds such as plastic precursors and new antibiotics, most of which can only be obtained through chemical synthesis currently. Herein, we review and discuss novel strategies that have been developed to rewrite natural metabolic blueprints in a bid to broaden the chemical repertoire achievable in microorganisms. This review aims to provide insights on recent approaches taken to open new avenues for achieving biochemical production that are beyond currently available inventions

    Rewriting the metabolic blueprint: advances in pathway diversification in microorganisms

    No full text
    10.3389/fmicb.2018.00155Frontiers in Microbiology9FEB155completedcomplete
    corecore