103 research outputs found

    A New Integrated Variable Based on Thermometry, Actimetry and Body Position (TAP) to Evaluate Circadian System Status in Humans

    Get PDF
    The disruption of the circadian system in humans has been associated with the development of chronic illnesses and the worsening of pre-existing pathologies. Therefore, the assessment of human circadian system function under free living conditions using non-invasive techniques needs further research. Traditionally, overt rhythms such as activity and body temperature have been analyzed separately; however, a comprehensive index could reduce individual recording artifacts. Thus, a new variable (TAP), based on the integrated analysis of three simultaneous recordings: skin wrist temperature (T), motor activity (A) and body position (P) has been developed. Furthermore, we also tested the reliability of a single numerical index, the Circadian Function Index (CFI), to determine the circadian robustness. An actimeter and a temperature sensor were placed on the arm and wrist of the non-dominant hand, respectively, of 49 healthy young volunteers for a period of one week. T, A and P values were normalized for each subject. A non-parametric analysis was applied to both TAP and the separate variables to calculate their interdaily stability, intradaily variability and relative amplitude, and these values were then used for the CFI calculation. Modeling analyses were performed in order to determine TAP and CFI reliability. Each variable (T, A, P or TAP) was independently correlated with rest-activity logs kept by the volunteers. The highest correlation (r = −0.993, p<0.0001), along with highest specificity (0.870), sensitivity (0.740) and accuracy (0.904), were obtained when rest-activity records were compared to TAP. Furthermore, the CFI proved to be very sensitive to changes in circadian robustness. Our results demonstrate that the integrated TAP variable and the CFI calculation are powerful methods to assess circadian system status, improving sensitivity, specificity and accuracy in differentiating activity from rest over the analysis of wrist temperature, body position or activity alone

    Relationship between tobacco, cagA and vacA i1 virulence factors and bacterial load in patients infected by Helicobacter pylori

    Get PDF
    Background and Aim Several biological and epidemiological studies support a relationship between smoking and Helicobacter pylori (H. pylori) to increase the risk of pathology. However, there have been few studies on the potential synergistic association between specific cagA and vacA virulence factors and smoking in patients infected by Helicobacter pylori. We studied the relationship between smoking and cagA, vacA i1 virulence factors and bacterial load in H. pylori infected patients. Methods Biopsies of the gastric corpus and antrum from 155 consecutive patients in whom there was clinical suspicion of infection by H. pylori were processed. In 106 patients H. pylori infection was detected. Molecular methods were used to quantify the number of microorganisms and presence of cagA and vacA i1 genes. A standardized questionnaire was used to obtain patients’ clinical data and lifestyle variables, including tobacco and alcohol consumption. Adjusted Odds Ratios (ORadjusted) were estimated by unconditional logistic regression. Results cagA was significantly associated with active-smoking at endoscope: ORadjusted 4.52. Evidence of association was found for vacA i1 (ORadjusted 3.15). Bacterial load was higher in active-smokers, although these differences did not yield statistical significance (median of 262.2 versus 79.4 copies of H. pylori per cell). Conclusions The association between smoking and a higher risk of being infected by a virulent bacterial population and with higher bacterial load, support a complex interaction between H. pylori infection and environmental factors

    Electrical Pulse Stimulation of Cultured Human Skeletal Muscle Cells as an In Vitro Model of Exercise

    Get PDF
    Background and Aims Physical exercise leads to substantial adaptive responses in skeletal muscles and plays a central role in a healthy life style. Since exercise induces major systemic responses, underlying cellular mechanisms are difficult to study in vivo. It was therefore desirable to develop an in vitro model that would resemble training in cultured human myotubes. Methods Electrical pulse stimulation (EPS) was applied to adherent human myotubes. Cellular contents of ATP, phosphocreatine (PCr) and lactate were determined. Glucose and oleic acid metabolism were studied using radio-labeled substrates, and gene expression was analyzed using real-time RT-PCR. Mitochondrial content and function were measured by live imaging and determination of citrate synthase activity, respectively. Protein expression was assessed by electrophoresis and immunoblotting. Results High-frequency, acute EPS increased deoxyglucose uptake and lactate production, while cell contents of both ATP and PCr decreased. Chronic, low-frequency EPS increased oxidative capacity of cultured myotubes by increasing glucose metabolism (uptake and oxidation) and complete fatty acid oxidation. mRNA expression level of pyruvate dehydrogenase complex 4 (PDK4) was significantly increased in EPS-treated cells, while mRNA expressions of interleukin 6 (IL-6), cytochrome C and carnitin palmitoyl transferase b (CPT1b) also tended to increase. Intensity of MitoTracker®Red FM was doubled after 48 h of chronic, low-frequency EPS. Protein expression of a slow fiber type marker (MHCI) was increased in EPS-treated cells. Conclusions Our results imply that in vitro EPS (acute, high-frequent as well as chronic, low-frequent) of human myotubes may be used to study effects of exercise.This work was funded by the University of Oslo, Oslo University College, the Norwegian Diabetes Foundation, the Freia Chocolade Fabriks Medical Foundation and the Anders Jahre’s Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    The Rts1 Regulatory Subunit of Protein Phosphatase 2A Is Required for Control of G1 Cyclin Transcription and Nutrient Modulation of Cell Size

    Get PDF
    The key molecular event that marks entry into the cell cycle is transcription of G1 cyclins, which bind and activate cyclin-dependent kinases. In yeast cells, initiation of G1 cyclin transcription is linked to achievement of a critical cell size, which contributes to cell-size homeostasis. The critical cell size is modulated by nutrients, such that cells growing in poor nutrients are smaller than cells growing in rich nutrients. Nutrient modulation of cell size does not work through known critical regulators of G1 cyclin transcription and is therefore thought to work through a distinct pathway. Here, we report that Rts1, a highly conserved regulatory subunit of protein phosphatase 2A (PP2A), is required for normal control of G1 cyclin transcription. Loss of Rts1 caused delayed initiation of bud growth and delayed and reduced accumulation of G1 cyclins. Expression of the G1 cyclin CLN2 from an inducible promoter rescued the delayed bud growth in rts1Δ cells, indicating that Rts1 acts at the level of transcription. Moreover, loss of Rts1 caused altered regulation of Swi6, a key component of the SBF transcription factor that controls G1 cyclin transcription. Epistasis analysis revealed that Rts1 does not work solely through several known critical upstream regulators of G1 cyclin transcription. Cells lacking Rts1 failed to undergo nutrient modulation of cell size. Together, these observations demonstrate that Rts1 is a key player in pathways that link nutrient availability, cell size, and G1 cyclin transcription. Since Rts1 is highly conserved, it may function in similar pathways in vertebrates

    Erratum to: Scaling up strategies of the chronic respiratory disease programme of the European Innovation Partnership on Active and Healthy Ageing (Action Plan B3: Area 5).

    Get PDF
    [This corrects the article DOI: 10.1186/s13601-016-0116-9.]

    Positioning the principles of precision medicine in care pathways for allergic rhinitis and chronic rhinosinusitis - A EUFOREA-ARIA-EPOS-AIRWAYS ICP statement.

    Get PDF
    Precision medicine (PM) is increasingly recognized as the way forward for optimizing patient care. Introduced in the field of oncology, it is now considered of major interest in other medical domains like allergy and chronic airway diseases, which face an urgent need to improve the level of disease control, enhance patient satisfaction and increase effectiveness of preventive interventions. The combination of personalized care, prediction of treatment success, prevention of disease and patient participation in the elaboration of the treatment plan is expected to substantially improve the therapeutic approach for individuals suffering from chronic disabling conditions. Given the emerging data on the impact of patient stratification on treatment outcomes, European and American regulatory bodies support the principles of PM and its potential advantage over current treatment strategies. The aim of the current document was to propose a consensus on the position and gradual implementation of the principles of PM within existing adult treatment algorithms for allergic rhinitis (AR) and chronic rhinosinusitis (CRS). At the time of diagnosis, prediction of success of the initiated treatment and patient participation in the decision of the treatment plan can be implemented. The second-level approach ideally involves strategies to prevent progression of disease, in addition to prediction of success of therapy, and patient participation in the long-term therapeutic strategy. Endotype-driven treatment is part of a personalized approach and should be positioned at the tertiary level of care, given the efforts needed for its implementation and the high cost of molecular diagnosis and biological treatment

    Parameter induction in continuous univariate distributions: Well-established G families

    Full text link
    corecore