64,136 research outputs found
Demixing can occur in binary hard-sphere mixtures with negative non-additivity
A binary fluid mixture of non-additive hard spheres characterized by a size
ratio and a non-additivity parameter
is considered in infinitely many
dimensions. From the equation of state in the second virial approximation
(which is exact in the limit ) a demixing transition with a
critical consolute point at a packing fraction scaling as
is found, even for slightly negative non-additivity, if
. Arguments concerning the stability of the
demixing with respect to freezing are provided.Comment: 4 pages, 2 figures; title changed; final paragraph added; to be
published in PRE as a Rapid Communicatio
K X-Ray Energies and Transition Probabilities for He-, Li- and Be-like Praseodymium ions
Theoretical transition energies and probabilities for He-, Li- and Be-like
Praseodymium ions are calculated in the framework of the multi-configuration
Dirac-Fock method (MCDF), including QED corrections. These calculated values
are compared to recent experimental data obtained in the Livermore SuperEBIT
electron beam ion trap facility
Strong flavour changing effective operator contributions to single top quark production
We study the effects of dimension six effective operators on the production
of single top quarks at the LHC. The operator set considered includes terms
with effective gluon interactions and four-fermion terms. Analytic expressions
for the several partonic cross sections of single top production will be
presented, as well as the results of their integration on the parton density
functions.Comment: 20 pages, 7 fig
The entropy of the noncommutative acoustic black hole based on generalized uncertainty principle
In this paper we investigate statistical entropy of a 3-dimensional rotating
acoustic black hole based on generalized uncertainty principle. In our results
we obtain an area entropy and a correction term associated with the
noncommutative acoustic black hole when introduced in the generalized
uncertainty principle takes a specific value. However, in this method, it is
not needed to introduce the ultraviolet cut-off and divergences are eliminated.
Moreover, the small mass approximation is not necessary in the original
brick-wall model.Comment: 9 pages, no figures; version to appear in PLB. arXiv admin note:
substantial text overlap with arXiv:1210.773
Probing the Cosmological Principle in the counts of radio galaxies at different frequencies
According to the Cosmological Principle, the matter distribution on very
large scales should have a kinematic dipole that is aligned with that of the
CMB. We determine the dipole anisotropy in the number counts of two all-sky
surveys of radio galaxies. For the first time, this analysis is presented for
the TGSS survey, allowing us to check consistency of the radio dipole at low
and high frequencies by comparing the results with the well-known NVSS survey.
We match the flux thresholds of the catalogues, with flux limits chosen to
minimise systematics, and adopt a strict masking scheme. We find dipole
directions that are in good agreement with each other and with the CMB dipole.
In order to compare the amplitude of the dipoles with theoretical predictions,
we produce sets of lognormal realisations. Our realisations include the
theoretical kinematic dipole, galaxy clustering, Poisson noise, simulated
redshift distributions which fit the NVSS and TGSS source counts, and errors in
flux calibration. The measured dipole for NVSS is times larger than
predicted by the mock data. For TGSS, the dipole is almost times
larger than predicted, even after checking for completeness and taking account
of errors in source fluxes and in flux calibration. Further work is required to
understand the nature of the systematics that are the likely cause of the
anomalously large TGSS dipole amplitude.Comment: 13 pages, 8 figures, 2 tables; Significant improvements. Version
accepted by JCA
- …