82,509 research outputs found
Impact of FCNC top quark interactions on BR(t -> b W)
We study the effect that FCNC interactions of the top quark will have on the
branching ratio of charged decays of the top quark. We have performed an
integrated analysis using Tevatron and B-factories data and with just the
further assumption that the CKM matrix is unitary we can obtain very
restrictive bounds on the strong and electroweak FCNC branching ratios Br(t ->
q X) < 4.0 10^{-4}, where X is any vector boson and a sum in q = u,c is
implied.Comment: 10 pages, 5 figure
Contributions from dimension six strong flavor changing operators to top anti-top, top plus gauge boson, and top plus Higgs boson production at the LHC
We study the effects of a set of dimension six flavor changing effective
operators on several processes of production of top quarks at the LHC. Namely,
top anti-top production and associated production of a top and a gauge or Higgs
boson. Analytical expressions for the cross sections of these processes are
derived and presented.Comment: 14 pages, 10 figures, refs. adde
Phenomenological Comparison of Models with Extended Higgs Sectors
Beyond the Standard Model (SM) extensions usually include extended Higgs
sectors. Models with singlet or doublet fields are the simplest ones that are
compatible with the parameter constraint. The discovery of new non-SM
Higgs bosons and the identification of the underlying model requires dedicated
Higgs properties analyses. In this paper, we compare several Higgs sectors
featuring 3 CP-even neutral Higgs bosons that are also motivated by their
simplicity and their capability to solve some of the flaws of the SM. They are:
the SM extended by a complex singlet field (CxSM), the singlet extension of the
2-Higgs-Doublet Model (N2HDM), and the Next-to-Minimal Supersymmetric SM
extension (NMSSM). In addition, we analyse the CP-violating 2-Higgs-Doublet
Model (C2HDM), which provides 3 neutral Higgs bosons with a pseudoscalar
admixture. This allows us to compare the effects of singlet and pseudoscalar
admixtures. Through dedicated scans of the allowed parameter space of the
models, we analyse the phenomenologically viable scenarios from the view point
of the SM-like Higgs boson and of the signal rates of the non-SM-like Higgs
bosons to be found. In particular, we analyse the effect of
singlet/pseudoscalar admixture, and the potential to differentiate these models
in the near future. This is supported by a study of couplings sums of the Higgs
bosons to massive gauge bosons and to fermions, where we identify features that
allow us to distinguish the models, in particular when only part of the Higgs
spectrum is discovered. Our results can be taken as guidelines for future LHC
data analyses, by the ATLAS and CMS experiments, to identify specific benchmark
points aimed at revealing the underlying model.Comment: Matches journal version; figures for NMSSM changed; conclusions
unchange
The Contribution of the First Stars to the Cosmic Infrared Background
We calculate the contribution to the cosmic infrared background from very
massive metal-free stars at high redshift. We explore two plausible
star-formation models and two limiting cases for the reprocessing of the
ionizing stellar emission. We find that Population III stars may contribute
significantly to the cosmic near-infrared background if the following
conditions are met: (i) The first stars were massive, with M > ~100 M_sun. (ii)
Molecular hydrogen can cool baryons in low-mass haloes. (iii) Pop III star
formation is ongoing, and not shut off through negative feedback effects. (iv)
Virialized haloes form stars at about 40 per cent efficiency up to the redshift
of reionization, z~7. (v) The escape fraction of the ionizing radiation into
the intergalactic medium is small. (vi) Nearly all of the stars end up in
massive black holes without contributing to the metal enrichment of the
Universe.Comment: 11 pages, 6 figures, expanded discussion, added mid-IR to Fig 6,
MNRAS in pres
- …