19,331 research outputs found

    Interplay between chiral and axial symmetries in a SU(2) Nambu--Jona-Lasinio Model with the Polyakov loop

    Full text link
    We consider a two flavor Polyakov--Nambu--Jona-Lasinio (PNJL) model where the Lagrangian includes an interaction term that explicitly breaks the UA(1)_A(1) anomaly. At finite temperature, the restoration of chiral and axial symmetries, signaled by the behavior of several observables, is investigated. We compare the effects of two regularizations at finite temperature, one of them, that allows high momentum quarks states, leading to the full recovery of chiral symmetry. From the analysis of the behavior of the topological susceptibility and of the mesonic masses of the axial partners, it is found in the SU(2) model that, unlike the SU(3) results, the recovery of the axial symmetry is not a consequence of the full recovery of the chiral symmetry. Thus, one needs to use an additional idea, by means of a temperature dependence of the anomaly coefficient, that simulates instanton suppression effects.Comment: 21 pages, 5 figures; PRD versio

    Influence of the external pressure on the quantum correlations of molecular magnets

    Full text link
    The study of quantum correlations in solid state systems is a large avenue for research and their detection and manipulation are an actual challenge to overcome. In this context, we show by using first-principles calculations on the prototype material KNaCuSi4_{4}O10_{10} that the degree of quantum correlations in this spin cluster system can be managed by external hydrostatic pressure. Our results open the doors for research in detection and manipulation of quantum correlations in magnetic systems with promising applications in quantum information science

    Adubação de pastagens

    Get PDF
    Análise de solo; Recomendação de correção do solo e adubação; Sistemas de produção e estratégicas de adubação

    Observational Constraints on Visser's Cosmological Model

    Full text link
    Theories of gravity for which gravitons can be treated as massive particles have presently been studied as realistic modifications of General Relativity, and can be tested with cosmological observations. In this work, we study the ability of a recently proposed theory with massive gravitons, the so-called Visser theory, to explain the measurements of luminosity distance from the Union2 compilation, the most recent Type-Ia Supernovae (SNe Ia) dataset, adopting the current ratio of the total density of non-relativistic matter to the critical density (Ωm\Omega_m) as a free parameter. We also combine the SNe Ia data with constraints from Baryon Acoustic Oscillations (BAO) and CMB measurements. We find that, for the allowed interval of values for Ωm\Omega_m, a model based on Visser's theory can produce an accelerated expansion period without any dark energy component, but the combined analysis (SNe Ia + BAO + CMB) shows that the model is disfavored when compared with Λ\LambdaCDM model.Comment: 6 pages, 4 figure
    corecore