6 research outputs found

    A multibiomarker approach highlights effects induced by the human pharmaceutical gemfibrozil to gilthead seabream Sparus aurata

    Get PDF
    Lipid regulators are among the most prescribed human pharmaceuticals worldwide. Gemfibrozil, which belongs to this class of pharmaceuticals, is one of the most frequently encountered in the aquatic environment. However, there is limited information concerning the mechanisms involved in gemfibrozil effects to aquatic organisms, particularly to marine organisms. Based on this knowledge gap, the current study aimed to assess biochemical and behavioral effects following a sublethal exposure to gemfibrozil (1.5, 15, 150, 1500 and 15,000 μg L-1) in the estuarine/marine fish Sparus aurata. After the exposure to 1.5 μg L-1 of gemfibrozil, fish had reduced ability to swim against a water flow and increased lipid peroxidation in the liver. At concentrations between 15-15,000 μg L-1, the activities of some enzymes involved in antioxidant defense were induced, appearing to be sufficient to prevent oxidative damage. Depending on the organ, different responses to gemfibrozil were displayed, with enzymes like catalase being more stimulated in gills, whereas glutathione peroxidase was more activated in liver. Although there were no obvious concentration-response relationships, the integrated biomarker response version 2 (IBRv2) analysis revealed that the highest concentrations of gemfibrozil (between 150-15,000 μg L-1) caused more alterations. All the tested concentrations of gemfibrozil induced effects in S. aurata, in terms of behavior and/or oxidative stress responses. Oxidative damage was found at a concentration that is considered environmentally relevant, suggesting a potential of this pharmaceutical to impact fish populations.This research was supported through the COMPETE – Operational Competitiveness Program and National Funds through FCT – Foundation for Science and Technology, under the project “NANOAu – Effects of Gold Nanoparticles to Aquatic Organisms” (FCT PTDC/MAR-EST/3399/2012) (FCOMP-01-0124-FEDER-029435), through FCT/MCTES through national funds (PIDDAC), the cofounding by FEDER, within the PT2020 Partnership Agreement and Compete 2020 to CESAM (UID/AMB/50017 – POCI-01-0145-FEDER-007638) and UID/QUI/50006/2013. A. Barreto has a doctoral fellowship from FCT (SFRH/BD/97624/2013); L. G. Luis had a fellowship from FCT (BI/UI88/6881/2014). MO has financial support of the program Investigator FCT, co-funded by the Human Potential Operational Programme and European Social Fund (IF/00335(2015).info:eu-repo/semantics/publishedVersio

    Development of a multi-residue method for the determination of human and veterinary pharmaceuticals and some of their metabolites in aqueous environmental matrices by SPE-UHPLC–MS/MS

    No full text
    The aim of the present work was to develop and validate a multi-residue method for the analysis of 33 human and veterinary pharmaceuticals (non-steroidal anti-inflammatory drugs (NSAIDs)/analgesics, antibiotics and psychiatric drugs), including some of their metabolites, in several aqueous environ-mental matrices: drinking water, surface water and wastewaters. The method is based on solid phase extraction (SPE) followed by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC–MS/MS) and it was validated for different aqueous matrices, namely bottled water, tap water, seawater, river water and wastewaters, showing recoveries between 50% and 112% for the majority of the target analytes. The developed analytical methodology allowed method detection limits in the low nanograms per liter level. Method intra- and inter-day precision was under 8% and 11%, respectively, expressed as relative standard deviation. The developed method was applied to the analysis of drinking water (bottled and tap water), surface waters (seawater and river water) and wastewaters (wastewater treatment plant (WWTP) influent and effluent). Due to the selectivity and sensitivity of the optimized method, it was possible to detect pharmaceuticals in all the aqueous environmental matrices considered, including in bottled water at concentrations up to 31 ng L−1 (salicylic acid). In general, non-steroidal anti-inflammatory drugs/analgesics was the therapeutic group most frequently detected, with the highest concentrations found in wastewaters (acetaminophen and the metabolite carboxyibuprofen at levels up to 615 and 120 g L−1, respectively).info:eu-repo/semantics/publishedVersio

    Treatment of a simulated wastewater amended with a chiral pharmaceuticals mixture by an aerobic granular sludge sequencing batch reactor

    No full text
    An aerobic granular sludge-sequencing batch reactor (AGS-SBR) was fed for 28-days with a simulated wastewater containing a mixture of chiral pharmaceuticals (CPs) (alprenolol, bisoprolol, metoprolol, propranolol, venlafaxine, salbutamol, fluoxetine and norfluoxetine), each at 1.3 μg L−1. AGS-SBR exhibited the highest removal efficiency for norfluoxetine, with preferential removal of the (R)-enantiomer indicating that biological-mediated processes occurred. For all other CPs, removal was non-enantioselective, occurring through biosorption onto AGS. A gradual decline of CPs removal was observed, probably related to the decrease of AGS adsorption capacity. Moreover, chemical oxygen demand (COD) content in the bulk liquid after anaerobic feeding increased, and P-release dropped, probably because the polyphosphate-accumulating organism's activity was affected. Nitrification was also affected as indicated by the ammonium effluent concentration increase. Moreover, CPs exposure promoted AGS disintegration, with decreasing granule size. After stopping CPs feeding, the AGS started to recover its compact structure, and the system returned its normal performance concerning COD- and P-removal. N-removal seemed to be a more sensitive process, as while the ammonium levels were fully restored at the end of operation, nitrite reduction was only partially restored. Results provide useful information on AGS performance during the treatment of wastewater containing pharmaceuticals, a frequent scenario in WWTP. © 2016C.L. Amorim, I.S. Moreira and A.R. Ribeiro acknowledge research grants from Fundação para a Ciência e Tecnologia (FCT), Portugal (SFRH/BPD/96481/2013, SFRH/BPD/87251/2012 and SFRH/BD/64999/2009) and Fundo Social Europeu (Programa Operacional Potencial Humano (POPH), Quadro de Referência Estratégico Nacional (QREN)). This work was supported by FCT through the projects PTDC/EBB-EBI/111699/2009, UID/Multi/50016/2013, UID/Multi/04423/2013 and UID/QUI/50006/2013. This work also received financial support from the European Regional Development Fund through COMPETE – and PHARMADRUGS-CESPU 2014. Operational Competitiveness Programme. The authors also thank to COST Action ES1202: Conceiving Wastewater Treatment in 2020 - Energetic, environmental and economic challenges. Thanks to Dr R.C. Pullar for corrections to the English

    Fate of priority pharmaceuticals and their main metabolites and transformation products in microalgae-based wastewater treatment systems

    No full text
    The present study evaluates the removal capacity of two high rate algae ponds (HRAPs) to eliminate 12 pharmaceuticals (PhACs) and 26 of their corresponding main metabolites and transformation products. The efficiency of these ponds, operating with and without primary treatment, was compared in order to study their capacity under the best performance conditions (highest solar irradiance). Concentrations of all the target compounds were determined in both water and biomass samples. Removal rates ranged from moderate (40–60 %) to high (>60 %) for most of them, with the exception of the psychiatric drugs carbamazepine, the β-blocking agent metoprolol and its metabolite, metoprolol acid. O-desmethylvenlafaxine, despite its very low biodegradability in conventional wastewater treatment plants, was removed to certain extent (13–39 %). Biomass concentrations suggested that bioadsorption/bioaccumulation to microalgae biomass was decisive regarding the elimination of non-biodegradable compounds such as venlafaxine and its main metabolites. HRAP treatment with and without primary treatment did not yield significant differences in terms of PhACs removal efficiency. The implementation of HRAPs as secondary treatment is a feasible alternative to CAS in terms of overall wastewater treatment, including organic micropollutants, with generally higher removal performances and implying a green, low-cost and more sustainable technology.This research was funded by the Spanish Ministry of Economy and Competitiveness (FOTOBIOGAS Project CTQ2014-57293-C3-3-R) and the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 676070 (SuPER-W). This communication reflects only the author’s view and the Research Executive Agency of the EU is not responsible for any use that may be made of the information it contains. M.J. García-Galán and L.H.M.L.M. Santos acknowledges their Juan de la Cierva research grants (FJCI-2014-22767 and IJCI-2017-34601, and IJCI-2017-32747, respectively), and M. Garfí and S. Rodríguez-Mozaz thanks the Ramon y Cajal program (RYC-2016-20059 and RYC-2014-16707, respectively), all from the Spanish Ministry of Economy and Competitiveness
    corecore