68,225 research outputs found
Out-of-equilibrium states and quasi-many-body localization in polar lattice gases
The absence of energy dissipation leads to an intriguing out-of-equilibrium
dynamics for ultracold polar gases in optical lattices, characterized by the
formation of dynamically-bound on-site and inter-site clusters of two or more
particles, and by an effective blockade repulsion. These effects combined with
the controlled preparation of initial states available in cold gases
experiments can be employed to create interesting out-of-equilibrium states.
These include quasi-equilibrated effectively repulsive 1D gases for attractive
dipolar interactions and dynamically-bound crystals. Furthermore,
non-equilibrium polar lattice gases can offer a promising scenario for the
study of many-body localization in the absence of quenched disorder. This
fascinating out-of-equilibrium dynamics for ultra-cold polar gases in optical
lattices may be accessible in on-going experiments.Comment: 5+1 pages, 4+1 figure
Relativistic quantum motion of spin-0 particles under the influence of non-inertial effects in the cosmic string space-time
We study solutions for the Klein-Gordon equation with vector and scalar
potentials of the Coulomb types under the influence of non-inertial effects in
the space-time of topological defects. We also investigate a quantum particle
described by the Klein-Gordon oscillator in the background space-time generated
by a string. An important result obtained is that the non-inertial effects
restrict the physical region of the space-time where the particle can be
placed. In addition, we show that these potentials can form bound states for
the relativistic wave equation equation in this kind of background.Comment: arXiv admin note: text overlap with arXiv:1608.0669
An Adult with Episodic Abnormal Limb Posturing
info:eu-repo/semantics/publishedVersio
Dynamical instabilities in density-dependent hadronic relativistic models
Unstable modes in asymmetric nuclear matter (ANM) at subsaturation densities
are studied in the framework of relativistic mean-field density-dependent
hadron models. The size of the instabilities that drive the system are
calculated and a comparison with results obtained within the non-linear Walecka
model is presented. The distillation and anti-distillation effects are
discussed.Comment: 8 pages, 8 Postscript figures. Submitted for publication in Phys.
Rev.
Loading of a Bose-Einstein condensate in the boson-accumulation regime
We study the optical loading of a trapped Bose-Einstein condensate by
spontaneous emission of atoms in excited electronic state in the
Boson-Accumulation Regime. We generalize the previous simplified analysis of
ref. [Phys. Rev. A 53, 2466 (1996)], to a 3D case in which more than one trap
level of the excited state trap is considered. By solving the corresponding
quantum many-body master equation, we demonstrate that also for this general
situation the photon reabsorption can help to increase the condensate fraction.
Such effect could be employed to realize a continuous atom laser, and to
overcome condensate losses.Comment: 7 pages, 5 eps figures, uses epl.st
- …