6,846 research outputs found
Durabilidade e atratividade de CeraTrap à Ceratitis capitata (Diptera: Tephritidae).
O objetivo deste trabalho foi comparar a atratividade da CeraTrap com o Trimedlure para o monitoramento de C. capitata, bem como a sua durabilidade no ambiente. Semiárido
Predicting spectral features in galaxy spectra from broad-band photometry
We explore the prospects of predicting emission line features present in
galaxy spectra given broad-band photometry alone. There is a general consent
that colours, and spectral features, most notably the 4000 A break, can predict
many properties of galaxies, including star formation rates and hence they
could infer some of the line properties. We argue that these techniques have
great prospects in helping us understand line emission in extragalactic objects
and might speed up future galaxy redshift surveys if they are to target
emission line objects only. We use two independent methods, Artifical Neural
Neworks (based on the ANNz code) and Locally Weighted Regression (LWR), to
retrieve correlations present in the colour N-dimensional space and to predict
the equivalent widths present in the corresponding spectra. We also investigate
how well it is possible to separate galaxies with and without lines from broad
band photometry only. We find, unsurprisingly, that recombination lines can be
well predicted by galaxy colours. However, among collisional lines some can and
some cannot be predicted well from galaxy colours alone, without any further
redshift information. We also use our techniques to estimate how much
information contained in spectral diagnostic diagrams can be recovered from
broad-band photometry alone. We find that it is possible to classify AGN and
star formation objects relatively well using colours only. We suggest that this
technique could be used to considerably improve redshift surveys such as the
upcoming FMOS survey and the planned WFMOS survey.Comment: 10 pages 7 figures summitted to MNRA
Anatomy Teaching, a “Model” Answer? Evaluating “Geoff”, a Painted Anatomical Horse, as a Tool for Enhancing Topographical Anatomy Learning
Development of new methods for anatomy teaching is increasingly important as we look to modernize and supplement traditional teaching methods. In this study, a life‐sized equine model, “Geoff” was painted with surface and deep anatomical structures with the aim of improving students’ ability to convert theoretical knowledge into improved topographical anatomy knowledge on the live horse. Third and fourth year veterinary medicine students (n = 45) were randomly allocated into experimental (used “Geoff”) and control (used textbook) groups. The efficacy of the model was evaluated through a structured oral exam using a live horse. Questionnaires gathered information on student confidence and enjoyment of the task. There was no significant difference in the performance of experimental and control groups either immediately (44±20% vs. 40±21%; P = 0.504) or 9 weeks after the learning intervention (55±17% vs. 55±20%; P = 0.980). There were however specific questions on which the experimental group performed better than controls, and for which gender effects were apparent. The students using “Geoff” showed a transient gain in confidence following the session (Likert scale 2.7 to 3.6) however the initial increase was no longer present at the second test. There was a significant influence of gender on confidence with greater confidence gains in females in the Experimental group. The students found the model to be extremely useful and both groups found the sessions enjoyable. The model will be of benefit as a complementary learning tool for students
Recommended from our members
Acoustically Driven Stark Effect in Transition Metal Dichalcogenide Monolayers
The Stark effect is one of the most efficient mechanisms to manipulate many-body states in nanostructured systems. In mono- and few-layer transition metal dichalcogenides, it has been successfully induced by optical and electric field means. Here, we tune the optical emission energies and dissociate excitonic states in MoSe2 monolayers employing the 220 MHz in-plane piezoelectric field carried by surface acoustic waves. We transfer the monolayers to high dielectric constant piezoelectric substrates, where the neutral exciton binding energy is reduced, allowing us to efficiently quench (above 90%) and red-shift the excitonic optical emissions. A model for the acoustically induced Stark effect yields neutral exciton and trion in-plane polarizabilities of 530 and 630 × 10-5 meV/(kV/cm)2, respectively, which are considerably larger than those reported for monolayers encapsulated in hexagonal boron nitride. Large in-plane polarizabilities are an attractive ingredient to manipulate and modulate multiexciton interactions in two-dimensional semiconductor nanostructures for optoelectronic applications. © 2021 The Authors. Published by American Chemical Society
- …