6,846 research outputs found

    Durabilidade e atratividade de CeraTrap à Ceratitis capitata (Diptera: Tephritidae).

    Get PDF
    O objetivo deste trabalho foi comparar a atratividade da CeraTrap com o Trimedlure para o monitoramento de C. capitata, bem como a sua durabilidade no ambiente. Semiárido

    Predicting spectral features in galaxy spectra from broad-band photometry

    Full text link
    We explore the prospects of predicting emission line features present in galaxy spectra given broad-band photometry alone. There is a general consent that colours, and spectral features, most notably the 4000 A break, can predict many properties of galaxies, including star formation rates and hence they could infer some of the line properties. We argue that these techniques have great prospects in helping us understand line emission in extragalactic objects and might speed up future galaxy redshift surveys if they are to target emission line objects only. We use two independent methods, Artifical Neural Neworks (based on the ANNz code) and Locally Weighted Regression (LWR), to retrieve correlations present in the colour N-dimensional space and to predict the equivalent widths present in the corresponding spectra. We also investigate how well it is possible to separate galaxies with and without lines from broad band photometry only. We find, unsurprisingly, that recombination lines can be well predicted by galaxy colours. However, among collisional lines some can and some cannot be predicted well from galaxy colours alone, without any further redshift information. We also use our techniques to estimate how much information contained in spectral diagnostic diagrams can be recovered from broad-band photometry alone. We find that it is possible to classify AGN and star formation objects relatively well using colours only. We suggest that this technique could be used to considerably improve redshift surveys such as the upcoming FMOS survey and the planned WFMOS survey.Comment: 10 pages 7 figures summitted to MNRA

    Anatomy Teaching, a “Model” Answer? Evaluating “Geoff”, a Painted Anatomical Horse, as a Tool for Enhancing Topographical Anatomy Learning

    Get PDF
    Development of new methods for anatomy teaching is increasingly important as we look to modernize and supplement traditional teaching methods. In this study, a life‐sized equine model, “Geoff” was painted with surface and deep anatomical structures with the aim of improving students’ ability to convert theoretical knowledge into improved topographical anatomy knowledge on the live horse. Third and fourth year veterinary medicine students (n = 45) were randomly allocated into experimental (used “Geoff”) and control (used textbook) groups. The efficacy of the model was evaluated through a structured oral exam using a live horse. Questionnaires gathered information on student confidence and enjoyment of the task. There was no significant difference in the performance of experimental and control groups either immediately (44±20% vs. 40±21%; P = 0.504) or 9 weeks after the learning intervention (55±17% vs. 55±20%; P = 0.980). There were however specific questions on which the experimental group performed better than controls, and for which gender effects were apparent. The students using “Geoff” showed a transient gain in confidence following the session (Likert scale 2.7 to 3.6) however the initial increase was no longer present at the second test. There was a significant influence of gender on confidence with greater confidence gains in females in the Experimental group. The students found the model to be extremely useful and both groups found the sessions enjoyable. The model will be of benefit as a complementary learning tool for students
    corecore