53,034 research outputs found

    Contact values of the particle-particle and wall-particle correlation functions in a hard-sphere polydisperse fluid

    Full text link
    The contact values g(σ,σ)g(\sigma,\sigma') of the radial distribution functions of a fluid of (additive) hard spheres with a given size distribution f(σ)f(\sigma) are considered. A ``universality'' assumption is introduced, according to which, at a given packing fraction η\eta, g(σ,σ)=G(z(σ,σ))g(\sigma,\sigma')=G(z(\sigma,\sigma')), where GG is a common function independent of the number of components (either finite or infinite) and z(σ,σ)=[2σσ/(σ+σ)]μ2/μ3z(\sigma,\sigma')=[2 \sigma \sigma'/(\sigma+\sigma')]\mu_2/\mu_3 is a dimensionless parameter, μn\mu_n being the nn-th moment of the diameter distribution. A cubic form proposal for the zz-dependence of GG is made and known exact consistency conditions for the point particle and equal size limits, as well as between two different routes to compute the pressure of the system in the presence of a hard wall, are used to express G(z)G(z) in terms of the radial distribution at contact of the one-component system. For polydisperse systems we compare the contact values of the wall-particle correlation function and the compressibility factor with those obtained from recent Monte Carlo simulations.Comment: 9 pages, 7 figure

    Disordered two-dimensional superconductors: roles of temperature and interaction strength

    Full text link
    We have considered the half-filled disordered attractive Hubbard model on a square lattice, in which the on-site attraction is switched off on a fraction ff of sites, while keeping a finite UU on the remaining ones. Through Quantum Monte Carlo (QMC) simulations for several values of ff and UU, and for system sizes ranging from 8×88\times 8 to 16×1616\times 16, we have calculated the configurational averages of the equal-time pair structure factor PsP_s, and, for a more restricted set of variables, the helicity modulus, ρs\rho_s, as functions of temperature. Two finite-size scaling {\it ansatze} for PsP_s have been used, one for zero-temperature and the other for finite temperatures. We have found that the system sustains superconductivity in the ground state up to a critical impurity concentration, fcf_c, which increases with UU, at least up to U=4 (in units of the hopping energy). Also, the normalized zero-temperature gap as a function of ff shows a maximum near f0.07f\sim 0.07, for 2U62\lesssim U\lesssim 6. Analyses of the helicity modulus and of the pair structure factor led to the determination of the critical temperature as a function of ff, for U=3,U=3, 4 and 6: they also show maxima near f0.07f\sim 0.07, with the highest TcT_c increasing with UU in this range. We argue that, overall, the observed behavior results from both the breakdown of CDW-superconductivity degeneracy and the fact that free sites tend to "push" electrons towards attractive sites, the latter effect being more drastic at weak couplings.Comment: 9 two-column pages, 14 figures, RevTe

    Manipulation of the dynamics of many-body systems via quantum control methods

    Full text link
    We investigate how dynamical decoupling methods may be used to manipulate the time evolution of quantum many-body systems. These methods consist of sequences of external control operations designed to induce a desired dynamics. The systems considered for the analysis are one-dimensional spin-1/2 models, which, according to the parameters of the Hamiltonian, may be in the integrable or non-integrable limits, and in the gapped or gapless phases. We show that an appropriate control sequence may lead a chaotic chain to evolve as an integrable chain and a system in the gapless phase to behave as a system in the gapped phase. A key ingredient for the control schemes developed here is the possibility to use, in the same sequence, different time intervals between control operations.Comment: 10 pages, 3 figure

    Pair correlation function of short-ranged square-well fluids

    Full text link
    We have performed extensive Monte Carlo simulations in the canonical (NVT) ensemble of the pair correlation function for square-well fluids with well widths λ1\lambda-1 ranging from 0.1 to 1.0, in units of the diameter σ\sigma of the particles. For each one of these widths, several densities ρ\rho and temperatures TT in the ranges 0.1ρσ30.80.1\leq\rho\sigma^3\leq 0.8 and Tc(λ)T3Tc(λ)T_c(\lambda)\lesssim T\lesssim 3T_c(\lambda), where Tc(λ)T_c(\lambda) is the critical temperature, have been considered. The simulation data are used to examine the performance of two analytical theories in predicting the structure of these fluids: the perturbation theory proposed by Tang and Lu [Y. Tang and B. C.-Y. Lu, J. Chem. Phys. {\bf 100}, 3079, 6665 (1994)] and the non-perturbative model proposed by two of us [S. B. Yuste and A. Santos, J. Chem. Phys. {\bf 101}, 2355 (1994)]. It is observed that both theories complement each other, as the latter theory works well for short ranges and/or moderate densities, while the former theory does for long ranges and high densities.Comment: 10 pages, 10 figure
    corecore