36,998 research outputs found

    Disordered two-dimensional superconductors: roles of temperature and interaction strength

    Full text link
    We have considered the half-filled disordered attractive Hubbard model on a square lattice, in which the on-site attraction is switched off on a fraction ff of sites, while keeping a finite UU on the remaining ones. Through Quantum Monte Carlo (QMC) simulations for several values of ff and UU, and for system sizes ranging from 8×88\times 8 to 16×1616\times 16, we have calculated the configurational averages of the equal-time pair structure factor PsP_s, and, for a more restricted set of variables, the helicity modulus, ρs\rho_s, as functions of temperature. Two finite-size scaling {\it ansatze} for PsP_s have been used, one for zero-temperature and the other for finite temperatures. We have found that the system sustains superconductivity in the ground state up to a critical impurity concentration, fcf_c, which increases with UU, at least up to U=4 (in units of the hopping energy). Also, the normalized zero-temperature gap as a function of ff shows a maximum near f0.07f\sim 0.07, for 2U62\lesssim U\lesssim 6. Analyses of the helicity modulus and of the pair structure factor led to the determination of the critical temperature as a function of ff, for U=3,U=3, 4 and 6: they also show maxima near f0.07f\sim 0.07, with the highest TcT_c increasing with UU in this range. We argue that, overall, the observed behavior results from both the breakdown of CDW-superconductivity degeneracy and the fact that free sites tend to "push" electrons towards attractive sites, the latter effect being more drastic at weak couplings.Comment: 9 two-column pages, 14 figures, RevTe

    Magnetic exchange mechanism for electronic gap opening in graphene

    Full text link
    We show within a local self-consistent mean-field treatment that a random distribution of magnetic adatoms can open a robust gap in the electronic spectrum of graphene. The electronic gap results from the interplay between the nature of the graphene sublattice structure and the exchange interaction between adatoms.The size of the gap depends on the strength of the exchange interaction between carriers and localized spins and can be controlled by both temperature and external magnetic field. Furthermore, we show that an external magnetic field creates an imbalance of spin-up and spin-down carriers at the Fermi level, making doped graphene suitable for spin injection and other spintronic applications.Comment: 5 pages, 5 figure

    Ising Spin Glass in a Transverse Magnetic Field

    Full text link
    We study the three-dimensional quantum Ising spin glass in a transverse magnetic field following the evolution of the bond probability distribution under Renormalisation Group transformations. The phase diagram (critical temperature TcT_c {\em vs} transverse field Γ\Gamma) we obtain shows a finite slope near T=0T=0, in contrast with the infinite slope for the pure case. Our results compare very well with the experimental data recently obtained for the dipolar Ising spin glass LiHo0.167_{0.167}Y0.833_{0.833}F4_4, in a transverse field. This indicates that this system is more apropriately described by a model with short range interactions than by an equivalent Sherrington-Kirkpatrick model in a transverse field.Comment: 7 pages, RevTeX3, Nota Cientifica PUC-Rio 23/9

    Tuning in magnetic modes in Tb(Co_{x}Ni_{1-x})_{2}B_{2}C: from longitudinal spin-density waves to simple ferromagnetism

    Full text link
    Neutron diffraction and thermodynamics techniques were used to probe the evolution of the magnetic properties of Tb(Co_{x}Ni_{1-x})_{2}B_{2}C. A succession of magnetic modes was observed as x is varied: the longitudinal modulated k=(0.55,0,0) state at x=0 is transformed into a collinear k=([nicefrac]\nicefrac{1}{2},0,[nicefrac]\nicefrac{1}{2}) antiferromagnetic state at x= 0.2, 0.4; then into a transverse c-axis modulated k=(0,0,[nicefrac]\nicefrac{1}{3}) mode at x= 0.6, and finally into a simple ferromagnetic structure at x= 0.8 and 1. Concomitantly, the low-temperature orthorhombic distortion of the tetragonal unit cell at x=0 is reduced smoothly such that for x >= 0.4 only a tetragonal unit cell is manifested. Though predicted theoretically earlier, this is the first observation of the k=(0,0,[nicefrac]\nicefrac{1}{3}) mode in borocarbides; our findings of a succession of magnetic modes upon increasing x also find support from a recently proposed theoretical model. The implication of these findings and their interpretation on the magnetic structure of the RM_{2}B_{2}C series are also discussed

    Manipulation of the dynamics of many-body systems via quantum control methods

    Full text link
    We investigate how dynamical decoupling methods may be used to manipulate the time evolution of quantum many-body systems. These methods consist of sequences of external control operations designed to induce a desired dynamics. The systems considered for the analysis are one-dimensional spin-1/2 models, which, according to the parameters of the Hamiltonian, may be in the integrable or non-integrable limits, and in the gapped or gapless phases. We show that an appropriate control sequence may lead a chaotic chain to evolve as an integrable chain and a system in the gapless phase to behave as a system in the gapped phase. A key ingredient for the control schemes developed here is the possibility to use, in the same sequence, different time intervals between control operations.Comment: 10 pages, 3 figure

    Knizhnik-Zamolodchikov-Bernard equations connected with the eight-vertex model

    Full text link
    Using quasiclassical limit of Baxter's 8 - vertex R - matrix, an elliptic generalization of the Knizhnik-Zamolodchikov equation is constructed. Via Off-Shell Bethe ansatz an integrable representation for this equation is obtained. It is shown that there exists a gauge transformation connecting this equation with Knizhnik-Zamolodchikov-Bernard equation for SU(2)-WZNW model on torus.Comment: 20 pages latex, macro: tcilate
    corecore