67,549 research outputs found
Detecting transit signatures of exoplanetary rings using SOAP3.0
CONTEXT. It is theoretically possible for rings to have formed around
extrasolar planets in a similar way to that in which they formed around the
giant planets in our solar system. However, no such rings have been detected to
date.
AIMS: We aim to test the possibility of detecting rings around exoplanets by
investigating the photometric and spectroscopic ring signatures in
high-precision transit signals.
METHODS: The photometric and spectroscopic transit signals of a ringed planet
is expected to show deviations from that of a spherical planet. We used these
deviations to quantify the detectability of rings. We present SOAP3.0 which is
a numerical tool to simulate ringed planet transits and measure ring
detectability based on amplitudes of the residuals between the ringed planet
signal and best fit ringless model.
RESULTS: We find that it is possible to detect the photometric and
spectroscopic signature of near edge-on rings especially around planets with
high impact parameter. Time resolution 7 mins is required for the
photometric detection, while 15 mins is sufficient for the spectroscopic
detection. We also show that future instruments like CHEOPS and ESPRESSO, with
precisions that allow ring signatures to be well above their noise-level,
present good prospects for detecting rings.Comment: 13 pages, 16 figures, 2 tables , accepted for publication in A&
Hydrogen storage in the form of metal hydrides
Reversible reactions between hydrogen and such materials as iron/titanium and magnesium/ nickel alloy may provide a means for storing hydrogen fuel. A demonstration model of an iron/titanium hydride storage bed is described. Hydrogen from the hydride storage bed powers a converted gasoline electric generator
Bifurcations in the theory of current transfer to cathodes of dc discharges and observations of transitions between different modes
General scenarios of transitions between different spot patterns on
electrodes of dc gas discharges and their relation to bifurcations of
steady-state solutions are analyzed. In the case of cathodes of arc discharges,
it is shown that any transition between different modes of current transfer is
related to a bifurcation of steady-state solutions. In particular, transitions
between diffuse and spot modes on axially symmetric cathodes, frequently
observed in the experiment, represent an indication of the presence of
pitchfork or fold bifurcations of steady-state solutions. Experimental
observations of transitions on cathodes of dc glow microdischarges are analyzed
and those potentially related to bifurcations of steady-state solutions are
identified. The relevant bifurcations are investigated numerically and the
computed patterns are found to conform to those observed in the course of the
corresponding transitions in the experiment
Gravitational waves in the generalized Chaplygin gas model
The consequences of taking the generalized Chaplygin gas as the dark energy
constituent of the Universe on the gravitational waves are studied and the
spectrum obtained from this model, for the flat case, is analyzed. Besides its
importance for the study of the primordial Universe, the gravitational waves
represent an additional perspective (besides the CMB temperature and
polarization anisotropies) to evaluate the consistence of the different dark
energy models and establish better constraints to their parameters. The
analysis presented here takes this fact into consideration to open one more
perspective of verification of the generalized Chapligin gas model
applicability. Nine particular cases are compared: one where no dark energy is
present; two that simulate the -CDM model; two where the gas acts like
the traditional Chaplygin gas; and four where the dark energy is the
generalized Chaplygin gas. The different spectra permit to distinguish the
-CDM and the Chaplygin gas scenarios.Comment: Latex file, 9 pages, 11 figures eps forma
Analytical results for long time behavior in anomalous diffusion
We investigate through a Generalized Langevin formalism the phenomenon of
anomalous diffusion for asymptotic times, and we generalized the concept of the
diffusion exponent. A method is proposed to obtain the diffusion coefficient
analytically through the introduction of a time scaling factor . We
obtain as well an exact expression for for all kinds of diffusion.
Moreover, we show that is a universal parameter determined by the
diffusion exponent. The results are then compared with numerical calculations
and very good agreement is observed. The method is general and may be applied
to many types of stochastic problem
Elodie metallicity-biased search for transiting Hot Jupiters I. Two Hot Jupiters orbiting the slightly evolved stars HD118203 and HD149143
We report the discovery of a new planet candidate orbiting the subgiant star
HD118203 with a period of P=6.1335 days. The best Keplerian solution yields an
eccentricity e=0.31 and a minimum mass m2sin(i)=2.1MJup for the planet. This
star has been observed with the ELODIE fiber-fed spectrograph as one of the
targets in our planet-search programme biased toward high-metallicity stars,
on-going since March 2004 at the Haute-Provence Observatory. An analysis of the
spectroscopic line profiles using line bisectors revealed no correlation
between the radial velocities and the line-bisector orientations, indicating
that the periodic radial-velocity signal is best explained by the presence of a
planet-mass companion. A linear trend is observed in the residuals around the
orbital solution that could be explained by the presence of a second companion
in a longer-period orbit. We also present here our orbital solution for another
slightly evolved star in our metal-rich sample, HD149143, recently proposed to
host a 4-d period Hot Jupiter by the N2K consortium. Our solution yields a
period P=4.09 days, a marginally significant eccentricity e=0.08 and a
planetary minimum mass of 1.36MJup. We checked that the shape of the spectral
lines does not vary for this star as well.Comment: Accepted in A&A (6 pages, 6 figures
Light elements in stars with exoplanets
It is well known that stars orbited by giant planets have higher abundances
of heavy elements when compared with average field dwarfs. A number of studies
have also addressed the possibility that light element abundances are different
in these stars. In this paper we will review the present status of these
studies. The most significant trends will be discussed.Comment: 10 pages, 6 figures. Submitted to the proceedings of IAU symposium
268: Light elements in the universe
Is the transition redshift a new cosmological number?
Observations from Supernovae Type Ia (SNe Ia) provided strong evidence for an
expanding accelerating Universe at intermediate redshifts. This means that the
Universe underwent a transition from deceleration to acceleration phases at a
transition redshift of the order unity whose value in principle depends
on the cosmology as well as on the assumed gravitational theory. Since
cosmological accelerating models endowed with a transition redshift are
extremely degenerated, in principle, it is interesting to know whether the
value of itself can be observationally used as a new cosmic
discriminator. After a brief discussion of the potential dynamic role played by
the transition redshift, it is argued that future observations combining SNe
Ia, the line-of-sight (or "radial") baryon acoustic oscillations, the
differential age of galaxies, as well as the redshift drift of the spectral
lines may tightly constrain , thereby helping to narrow the parameter
space for the most realistic models describing the accelerating Universe.Comment: 12 pages, 5 figures. Some discussions about how to estimate the
transition redshift have been added. New data by Planck and H(z) data have
been mentioned. New references have been adde
On the functional form of the metallicity-giant planet correlation
It is generally accepted that the presence of a giant planet is strongly
dependent on the stellar metallicity. A stellar mass dependence has also been
investigated, but this dependence does not seem as strong as the metallicity
dependence. Even for metallicity, however, the exact form of the correlation
has not been established. In this paper, we test several scenarios for
describing the frequency of giant planets as a function of its host parameters.
We perform this test on two volume-limited samples (from CORALIE and HARPS). By
using a Bayesian analysis, we quantitatively compared the different scenarios.
We confirm that giant planet frequency is indeed a function of metallicity.
However, there is no statistical difference between a constant or an
exponential function for stars with subsolar metallicities contrary to what has
been previously stated in the literature. The dependence on stellar mass could
neither be confirmed nor be discarded.Comment: 5 pages, 2 figures, accepted in A&
- …