67,549 research outputs found

    Detecting transit signatures of exoplanetary rings using SOAP3.0

    Full text link
    CONTEXT. It is theoretically possible for rings to have formed around extrasolar planets in a similar way to that in which they formed around the giant planets in our solar system. However, no such rings have been detected to date. AIMS: We aim to test the possibility of detecting rings around exoplanets by investigating the photometric and spectroscopic ring signatures in high-precision transit signals. METHODS: The photometric and spectroscopic transit signals of a ringed planet is expected to show deviations from that of a spherical planet. We used these deviations to quantify the detectability of rings. We present SOAP3.0 which is a numerical tool to simulate ringed planet transits and measure ring detectability based on amplitudes of the residuals between the ringed planet signal and best fit ringless model. RESULTS: We find that it is possible to detect the photometric and spectroscopic signature of near edge-on rings especially around planets with high impact parameter. Time resolution ≤\leq 7 mins is required for the photometric detection, while 15 mins is sufficient for the spectroscopic detection. We also show that future instruments like CHEOPS and ESPRESSO, with precisions that allow ring signatures to be well above their noise-level, present good prospects for detecting rings.Comment: 13 pages, 16 figures, 2 tables , accepted for publication in A&

    Hydrogen storage in the form of metal hydrides

    Get PDF
    Reversible reactions between hydrogen and such materials as iron/titanium and magnesium/ nickel alloy may provide a means for storing hydrogen fuel. A demonstration model of an iron/titanium hydride storage bed is described. Hydrogen from the hydride storage bed powers a converted gasoline electric generator

    Bifurcations in the theory of current transfer to cathodes of dc discharges and observations of transitions between different modes

    Get PDF
    General scenarios of transitions between different spot patterns on electrodes of dc gas discharges and their relation to bifurcations of steady-state solutions are analyzed. In the case of cathodes of arc discharges, it is shown that any transition between different modes of current transfer is related to a bifurcation of steady-state solutions. In particular, transitions between diffuse and spot modes on axially symmetric cathodes, frequently observed in the experiment, represent an indication of the presence of pitchfork or fold bifurcations of steady-state solutions. Experimental observations of transitions on cathodes of dc glow microdischarges are analyzed and those potentially related to bifurcations of steady-state solutions are identified. The relevant bifurcations are investigated numerically and the computed patterns are found to conform to those observed in the course of the corresponding transitions in the experiment

    Gravitational waves in the generalized Chaplygin gas model

    Full text link
    The consequences of taking the generalized Chaplygin gas as the dark energy constituent of the Universe on the gravitational waves are studied and the spectrum obtained from this model, for the flat case, is analyzed. Besides its importance for the study of the primordial Universe, the gravitational waves represent an additional perspective (besides the CMB temperature and polarization anisotropies) to evaluate the consistence of the different dark energy models and establish better constraints to their parameters. The analysis presented here takes this fact into consideration to open one more perspective of verification of the generalized Chapligin gas model applicability. Nine particular cases are compared: one where no dark energy is present; two that simulate the Λ\Lambda-CDM model; two where the gas acts like the traditional Chaplygin gas; and four where the dark energy is the generalized Chaplygin gas. The different spectra permit to distinguish the Λ\Lambda-CDM and the Chaplygin gas scenarios.Comment: Latex file, 9 pages, 11 figures eps forma

    Analytical results for long time behavior in anomalous diffusion

    Full text link
    We investigate through a Generalized Langevin formalism the phenomenon of anomalous diffusion for asymptotic times, and we generalized the concept of the diffusion exponent. A method is proposed to obtain the diffusion coefficient analytically through the introduction of a time scaling factor λ\lambda. We obtain as well an exact expression for λ\lambda for all kinds of diffusion. Moreover, we show that λ\lambda is a universal parameter determined by the diffusion exponent. The results are then compared with numerical calculations and very good agreement is observed. The method is general and may be applied to many types of stochastic problem

    Elodie metallicity-biased search for transiting Hot Jupiters I. Two Hot Jupiters orbiting the slightly evolved stars HD118203 and HD149143

    Full text link
    We report the discovery of a new planet candidate orbiting the subgiant star HD118203 with a period of P=6.1335 days. The best Keplerian solution yields an eccentricity e=0.31 and a minimum mass m2sin(i)=2.1MJup for the planet. This star has been observed with the ELODIE fiber-fed spectrograph as one of the targets in our planet-search programme biased toward high-metallicity stars, on-going since March 2004 at the Haute-Provence Observatory. An analysis of the spectroscopic line profiles using line bisectors revealed no correlation between the radial velocities and the line-bisector orientations, indicating that the periodic radial-velocity signal is best explained by the presence of a planet-mass companion. A linear trend is observed in the residuals around the orbital solution that could be explained by the presence of a second companion in a longer-period orbit. We also present here our orbital solution for another slightly evolved star in our metal-rich sample, HD149143, recently proposed to host a 4-d period Hot Jupiter by the N2K consortium. Our solution yields a period P=4.09 days, a marginally significant eccentricity e=0.08 and a planetary minimum mass of 1.36MJup. We checked that the shape of the spectral lines does not vary for this star as well.Comment: Accepted in A&A (6 pages, 6 figures

    Light elements in stars with exoplanets

    Full text link
    It is well known that stars orbited by giant planets have higher abundances of heavy elements when compared with average field dwarfs. A number of studies have also addressed the possibility that light element abundances are different in these stars. In this paper we will review the present status of these studies. The most significant trends will be discussed.Comment: 10 pages, 6 figures. Submitted to the proceedings of IAU symposium 268: Light elements in the universe

    Is the transition redshift a new cosmological number?

    Full text link
    Observations from Supernovae Type Ia (SNe Ia) provided strong evidence for an expanding accelerating Universe at intermediate redshifts. This means that the Universe underwent a transition from deceleration to acceleration phases at a transition redshift ztz_t of the order unity whose value in principle depends on the cosmology as well as on the assumed gravitational theory. Since cosmological accelerating models endowed with a transition redshift are extremely degenerated, in principle, it is interesting to know whether the value of ztz_t itself can be observationally used as a new cosmic discriminator. After a brief discussion of the potential dynamic role played by the transition redshift, it is argued that future observations combining SNe Ia, the line-of-sight (or "radial") baryon acoustic oscillations, the differential age of galaxies, as well as the redshift drift of the spectral lines may tightly constrain ztz_t, thereby helping to narrow the parameter space for the most realistic models describing the accelerating Universe.Comment: 12 pages, 5 figures. Some discussions about how to estimate the transition redshift have been added. New data by Planck and H(z) data have been mentioned. New references have been adde

    On the functional form of the metallicity-giant planet correlation

    Full text link
    It is generally accepted that the presence of a giant planet is strongly dependent on the stellar metallicity. A stellar mass dependence has also been investigated, but this dependence does not seem as strong as the metallicity dependence. Even for metallicity, however, the exact form of the correlation has not been established. In this paper, we test several scenarios for describing the frequency of giant planets as a function of its host parameters. We perform this test on two volume-limited samples (from CORALIE and HARPS). By using a Bayesian analysis, we quantitatively compared the different scenarios. We confirm that giant planet frequency is indeed a function of metallicity. However, there is no statistical difference between a constant or an exponential function for stars with subsolar metallicities contrary to what has been previously stated in the literature. The dependence on stellar mass could neither be confirmed nor be discarded.Comment: 5 pages, 2 figures, accepted in A&
    • …
    corecore