35,949 research outputs found

    Loading of a Bose-Einstein condensate in the boson-accumulation regime

    Full text link
    We study the optical loading of a trapped Bose-Einstein condensate by spontaneous emission of atoms in excited electronic state in the Boson-Accumulation Regime. We generalize the previous simplified analysis of ref. [Phys. Rev. A 53, 2466 (1996)], to a 3D case in which more than one trap level of the excited state trap is considered. By solving the corresponding quantum many-body master equation, we demonstrate that also for this general situation the photon reabsorption can help to increase the condensate fraction. Such effect could be employed to realize a continuous atom laser, and to overcome condensate losses.Comment: 7 pages, 5 eps figures, uses epl.st

    Optical-NIR analysis of globular clusters in the IKN dwarf spheroidal: a complex star formation history

    Full text link
    Age, metallicity and spatial distribution of globular clusters (GCs) provide a powerful tool to reconstruct major star-formation episodes in galaxies. IKN is a faint dwarf spheroidal (dSph) in the M81 group of galaxies. It contains five old GCs, which makes it the galaxy with the highest known specific frequency (SN=126). We estimate the photometric age, metallicity and spatial distribution of the poorly studied IKN GCs. We search SDSS for GC candidates beyond the HST field of view, which covers half of IKN. To break the age-metallicity degeneracy in the V-I colour we use WHT/LIRIS Ks-band photometry and derive photometric ages and metallicities by comparison with SSP models in the V,I,Ks colour space. IKN GCs' VIKs colours are consistent with old ages ( ⁣8\geq\!8 Gyr) and a metallicity distribution with a higher mean than typical for such a dSph ([Fe/H] ⁣ ⁣1.40.2+0.6]\!\simeq\!-1.4_{-0.2}^{+0.6} dex). Their photometric masses range (0.5<MGC<4×105M0.5 <{\cal M_{\rm GC}}<4\times10^5M_\odot) implies a high mass ratio between GCs and field stars, of 10.6%10.6\%. Mixture model analysis of the RGB field stars' metallicity suggests that 72\% of the stars may have formed together with the GCs. Using the most massive GC-SFR relation we calculate a SFR of  ⁣10M/\sim\!10M_\odot/yr during its formation epoch. We note that the more massive GCs are closer to the galaxy photometric centre. IKN GCs also appear spatially aligned along a line close to the IKN major-axis and nearly orthogonal to the plane of spatial distribution of galaxies in the M81 group. We identify one new IKN GC candidate based on colour and PSF analysis of the SDSS data. The evidence towards i) broad and high metallicity distribution of the field IKN RGB stars and its GCs, ii) high fraction and iii), spatial alignment of IKN GCs, supports a scenario for tidally triggered complex IKN's SFH in the context of interactions with galaxies in the M81 group.Comment: 12 pages, 9 figures, accepted to A&

    Quantum interference-induced stability of repulsively bound pairs of excitations

    Full text link
    We study the dynamics of two types of pairs of excitations which are bound despite their strong repulsive interaction. One corresponds to doubly occupied sites in one-dimensional Bose-Hubbard systems, the so-called doublons. The other is pairs of neighboring excited spins in anisotropic Heisenberg spin-1/2 chains. We investigate the possibility of decay of the bound pairs due to resonant scattering by a defect or due to collisions of the pairs. We find that the amplitudes of the corresponding transitions are very small. This is a result of destructive quantum interference and explains the stability of the bound pairs.Comment: 12 pages, 3 figure

    Many-particle confinement by constructed disorder and quantum computing

    Full text link
    Many-particle confinement (localization) is studied for a 1D system of spinless fermions with nearest-neighbor hopping and interaction, or equivalently, for an anisotropic Heisenberg spin-1/2 chain. This system is frequently used to model quantum computers with perpetually coupled qubits. We construct a bounded sequence of site energies that leads to strong single-particle confinement of all states on individual sites. We show that this sequence also leads to a confinement of all many-particle states in an infinite system for a time that scales as a high power of the reciprocal hopping integral. The confinement is achieved for strong interaction between the particles while keeping the overall bandwidth of site energies comparatively small. The results show viability of quantum computing with time-independent qubit coupling.Comment: An invited paper for the topical issue of J. Opt. B on quantum contro

    New family of potentials with analytical twiston-like solutions

    Full text link
    In this letter we present a new approach to find analytical twiston models. The effective two-field model was constructed by a non-trivial combination of two one field systems. In such an approach we successfully build analytical models which are satisfied by a combination of two defect-like solutions, where one is responsible to twist the molecular chain by 1800180^{\,0}, while the other implies in a longitudinal movement. Such a longitudinal movement can be fitted to have the size of the distance between adjacent molecular groups. The procedure works nicely and can be used to describe the dynamics of several other molecular chains.Comment: 7 pages, 3 figure

    Manipulation of the dynamics of many-body systems via quantum control methods

    Full text link
    We investigate how dynamical decoupling methods may be used to manipulate the time evolution of quantum many-body systems. These methods consist of sequences of external control operations designed to induce a desired dynamics. The systems considered for the analysis are one-dimensional spin-1/2 models, which, according to the parameters of the Hamiltonian, may be in the integrable or non-integrable limits, and in the gapped or gapless phases. We show that an appropriate control sequence may lead a chaotic chain to evolve as an integrable chain and a system in the gapless phase to behave as a system in the gapped phase. A key ingredient for the control schemes developed here is the possibility to use, in the same sequence, different time intervals between control operations.Comment: 10 pages, 3 figure

    Morbilidade Neonatal e Cesariana Electiva em Recém-Nascidos de Termo

    Get PDF
    INTRODUCTION: International guidelines suggest that non-urgent planned deliveries be scheduled at or after 39 weeks. Despite this recommendation elective cesarean often occurs before 39 weeks. Some research has demonstrated that elective cesarean before 39 weeks poses a greater risk to the infants than at or after 39 weeks. OBJECTIVE: To evaluate neonatal morbidity in term newborns born by elective cesarean section. MATERIAL AND METHODS: Retrospective study of all term elective cesarean sections (scheduled and without labor) performed in level III maternity, in the last 11 years (2003 - 2013). High risk pregnancies were excluded: twins, premature rupture of membranes, preeclampsia, poorly controlled diabetes mellitus, Rh isoimmunization and congenital malformations. Two groups of newborns with gestational age less than 39 weeks and equal or greater than 39 weeks gestational age were compared. RESULTS: In our sample, 45% of elective caesarean sections were performed before 39 weeks. Infants born before 39 weeks were more frequently admitted in neonatal intensive care, odds ratio 2.4 [1.4 - 4.1] p = 0.001, had more respiratory morbidity, odds ratio 2.4 [1.6 - 3.8] p < 0.001, more hyperbilirubinaemia odds ratio 2.3 [1.5 - 3.7] p < 0.001, more hypoglycaemia and/or feeding difficulties odds ratio 1.6 [1.2 - 2.4] p = 0.006, and longer admissions (more than five days), odds ratio 2.0 [1.4 - 3] p < 0.001. DISCUSSION: As in other studies 'early term' had higher respiratory and metabolic morbidity and consequently had a longer hospital stay. CONCLUSION: These findings support recommendations to delay elective cesarean delay until 39 weeks of gestation.info:eu-repo/semantics/publishedVersio
    corecore