55 research outputs found

    The MATHUSLA Test Stand

    Full text link
    The rate of muons from LHC pppp collisions reaching the surface above the ATLAS interaction point is measured and compared with expected rates from decays of WW and ZZ bosons and bb- and cc-quark jets. In addition, data collected during periods without beams circulating in the LHC provide a measurement of the background from cosmic ray inelastic backscattering that is compared to simulation predictions. Data were recorded during 2018 in a 2.5 ×\times 2.5 ×\times 6.5~m3\rm{m}^3 active volume MATHUSLA test stand detector unit consisting of two scintillator planes, one at the top and one at the bottom, which defined the trigger, and six layers of RPCs between them, grouped into three (x,y)(x,y)-measuring layers separated by 1.74 m from each other. Triggers selecting both upward-going tracks and downward-going tracks were used.Comment: 18 pages, 11 figures, 1 tabl

    Cosmic-ray searches with the MATHUSLA detector

    Full text link
    The performance of the proposed MATHUSLA detector as an instrument for studying the physics of cosmic rays by measuring extensive air showers is presented. The MATHUSLA detector is designed to observe and study the decay of long-lived particles produced at the pp interaction point of the CMS detector at CERN during the HL-LHC data-taking period. The proposed MATHUSLA detector will be composed of many layers of long scintillating bars that cannot measure more than one hit per bar and correctly report the hit coordinate in case of multiple hits. This study shows that adding a layer of RPC detectors with both analogue and digital readout significantly enhances the capabilities of MATHUSLA to measure the local densities and arrival times of charged particles at the front of air showers. We discuss open issues in cosmic-ray physics that the proposed MATHUSLA detector with an additional layer of RPC detectors could address and conclude by comparing with other air-shower facilities that measure cosmic rays in the PeV energy range.Comment: 64 pages, 58 figure

    Recent Progress and Next Steps for the MATHUSLA LLP Detector

    Full text link
    We report on recent progress and next steps in the design of the proposed MATHUSLA Long Lived Particle (LLP) detector for the HL-LHC as part of the Snowmass 2021 process. Our understanding of backgrounds has greatly improved, aided by detailed simulation studies, and significant R&D has been performed on designing the scintillator detectors and understanding their performance. The collaboration is on track to complete a Technical Design Report, and there are many opportunities for interested new members to contribute towards the goal of designing and constructing MATHUSLA in time for HL-LHC collisions, which would increase the sensitivity to a large variety of highly motivated LLP signals by orders of magnitude.Comment: Contribution to Snowmass 2021 (EF09, EF10, IF6, IF9), 18 pages, 12 figures. v2: included additional endorser

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Search for dark matter in association with a Higgs boson decaying to bb-quarks in pppp collisions at s=13\sqrt s=13 TeV with the ATLAS detector

    Get PDF

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF

    Charged-particle distributions at low transverse momentum in s=13\sqrt{s} = 13 TeV pppp interactions measured with the ATLAS detector at the LHC

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF
    corecore