2,692 research outputs found
Economic and demographic issues related to deployment of the Satellite Power System (SPS)
Growth in energy consumption stimulated interest in exploitation of renewable sources of electric energy. One technology that was proposed is the Satellite Power System (SPS). Before committing the U.S. to such a large program, the Department of Energy and the National Aeronautics and Space Administration are jointly participating in an SPS Concept Development and Evaluation Program. This white paper on industrial and population relocation is part of the FY 78 preliminary evaluation of related socio-economic issues. Results of four preliminary assessment activities are documented
Hadronic and electromagnetic probes of hot and dense matter in a Boltzmann+Hydrodynamics model of relativistic nuclear collisions
We present recent results on bulk observables and electromagnetic probes
obtained using a hybrid approach based on the Ultrarelativistic Quantum
Molecular Dynamics transport model with an intermediate hydrodynamic stage for
the description of heavy-ion collisions at AGS, SPS and RHIC energies. After
briefly reviewing the main results for particle multiplicities, elliptic flow,
transverse momentum and rapidity spectra, we focus on photon and dilepton
emission from hot and dense hadronic matter.Comment: To appear in the proceedings of WISH 2010: International Workshop on
Interplay between Soft and Hard interactions in particle production at
ultrarelativistic energies, Catania, Italy, 8-10 September 201
How Sensitive are Di-Leptons from Rho Mesons to the High Baryon Density Region?
We show that the measurement of di-leptons might provide only a restricted
view into the most dense stages of heavy ion reactions. Thus, possible studies
of meson and baryon properties at high baryon densities, as e.g. done at
GSI-HADES and envisioned for FAIR-CBM, might observe weaker effects than
currently expected in certain approaches. We argue that the strong absorption
of resonances in the high baryon density region of the heavy ion collision
masks information from the early hot and dense phase due to a strong increase
of the total decay width because of collisional broadening. To obtain
additional information, we also compare the currently used approaches to
extract di-leptons from transport simulations - i.e. shining, only vector
mesons from final baryon resonance decays and instant emission of di-leptons
and find a strong sensitivity on the method employed in particular at FAIR and
SPS energies. It is shown explicitly that a restriction to rho meson (and
therefore di-lepton) production only in final state baryon resonance decays
provide a strong bias towards rather low baryon densities. The results
presented are obtained from UrQMD v2.3 calculations using the standard set-up.Comment: 8 pages, 6 figures, expanded versio
Comparison of VLBI, TV and traveling clock techniques for time transfer
A three part experiment was conducted to develop and compare time transfer techniques. The experiment consisted of (1) a very long baseline interferometer (VLBI), (2) a high precision portable clock time transfer system between the two sites, and (3) a television time transfer. A comparison of the VLBI and traveling clock shows each technique can perform satisfactorily at the five nsec level. There was a systematic offset of 59 nsec between the two methods, which we attributed to a difference in epochs between VLBI formatter and station clock. The VLBI method had an internal random error of one nsec at the three sigma level for a two day period. Thus, the Mark II system performed well, and VLBI shows promise of being an accurate method of time transfer. The TV system, which had technical problems during the experiment, transferred time with a random error of about 50 nsec
Partially integrable systems in multidimensions by a variant of the dressing method. 1
In this paper we construct nonlinear partial differential equations in more
than 3 independent variables, possessing a manifold of analytic solutions with
high, but not full, dimensionality. For this reason we call them ``partially
integrable''. Such a construction is achieved using a suitable modification of
the classical dressing scheme, consisting in assuming that the kernel of the
basic integral operator of the dressing formalism be nontrivial. This new
hypothesis leads to the construction of: 1) a linear system of compatible
spectral problems for the solution of the integral equation in 3
independent variables each (while the usual dressing method generates spectral
problems in 1 or 2 dimensions); 2) a system of nonlinear partial differential
equations in dimensions (), possessing a manifold of analytic
solutions of dimension (), which includes one largely arbitrary relation
among the fields. These nonlinear equations can also contain an arbitrary
forcing.Comment: 21 page
Dressing method based on homogeneous Fredholm equation: quasilinear PDEs in multidimensions
In this paper we develop a dressing method for constructing and solving some
classes of matrix quasi-linear Partial Differential Equations (PDEs) in
arbitrary dimensions. This method is based on a homogeneous integral equation
with a nontrivial kernel, which allows one to reduce the nonlinear PDEs to
systems of non-differential (algebraic or transcendental) equations for the
unknown fields. In the simplest examples, the above dressing scheme captures
matrix equations integrated by the characteristics method and nonlinear PDEs
associated with matrix Hopf-Cole transformations.Comment: 31 page
ON THE COMPUTATIONAL HARDNESS OF THE CODE EQUIVALENCE PROBLEM IN CRYPTOGRAPHY
Code equivalence is a well-known concept in coding theory. Re-cently, literature saw an increased interest in this notion, due to the intro-duction of protocols based on the hardness of finding the equivalence between two linear codes. In this paper, we analyze the security of code equivalence, with a special focus on the hardest instances, in the interest of cryptographic usage. Our work stems from a thorough review of existing literature, identifies the various types of solvers for the problem, and provides a precise complexity analysis, where previously absent. Furthermore, we are able to improve on the state of the art, providing more efficient algorithm variations, for which we include numerical simulation data. In the end, the goal of this paper is to provide a complete, single point of access, which can be used as a tool for designing schemes that rely on the code equivalence problem
Effect of design factors on surface temperature and wear in disk brakes
The temperatures, friction, wear and contact conditions that occur in high energy disk brakes are studied. Surface and near surface temperatures were monitored at various locations in a caliper disk brake during drag type testing, with friction coefficient and wear rates also being determined. The recorded transient temperature distributions in the friction pads and infrared photographs of the rotor disk surface both showed that contact at the friction surface was not uniform, with contact areas constantly shifting due to nonuniform thermal expansion and wear. The effect of external cooling and of design modifications on friction, wear and temperatures was also investigated. It was found that significant decreases in surface temperature and in wear rate can be achieved without a reduction in friction either by slotting the contacting face of the brake pad or by modifying the design of the pad support to improve pad compliance. Both design changes result in more uniform contact conditions on the friction surface
Multiscale expansions of difference equations in the small lattice spacing regime, and a vicinity and integrability test. I
We propose an algorithmic procedure i) to study the ``distance'' between an
integrable PDE and any discretization of it, in the small lattice spacing
epsilon regime, and, at the same time, ii) to test the (asymptotic)
integrability properties of such discretization. This method should provide, in
particular, useful and concrete informations on how good is any numerical
scheme used to integrate a given integrable PDE. The procedure, illustrated on
a fairly general 10-parameter family of discretizations of the nonlinear
Schroedinger equation, consists of the following three steps: i) the
construction of the continuous multiscale expansion of a generic solution of
the discrete system at all orders in epsilon, following the Degasperis -
Manakov - Santini procedure; ii) the application, to such expansion, of the
Degasperis - Procesi (DP) integrability test, to test the asymptotic
integrability properties of the discrete system and its ``distance'' from its
continuous limit; iii) the use of the main output of the DP test to construct
infinitely many approximate symmetries and constants of motion of the discrete
system, through novel and simple formulas.Comment: 34 pages, no figur
- …