55 research outputs found

    Nanobio Silver: Its Interactions with Peptides and Bacteria, and Its Uses in Medicine

    Full text link

    The antibacterial properties of a novel chitosan–Ag-nanoparticle composite

    No full text
    Escherichia coli expressing recombinant green fluorescent protein was used to test the bactericidal efficacy of a newly synthesized chitosan–Ag-nanoparticle composite. The composite was found to have significantly higher antimicrobial activity than its components at their respective concentrations. The one-pot synthesis method led to the formation of small Ag nanoparticles attached to the polymer which can be dispersed in media of pH ≤ 6.3. The presence of a small percentage (2.15%, w/w) of metal nanoparticles in the composite was enough to significantly enhance inactivation of E. coli as compared with unaltered chitosan. Fluorescence spectroscopy indicated that bacterial growth stopped immediately after exposure of E. coli to the composite, with release of cellular green fluorescent protein into the medium at a faster rate than with chitosan. Fluorescence confocal laser scanning and scanning electron microscopy showed attachment of the bacteria to the composite and their subsequent fragmentation. Native protein gel electrophoresis experiments indicated no effect of the composite on bacterial proteins

    Signaling gene cascade in silver nanoparticle induced apoptosis

    No full text
    Nanoscale materials are presently gaining much importance for biological applications especially in the field of medicine. The large numbers of nanomaterial based products that are currently being developed – with projected applications in medicine – have inspired a growing interest in exploring their impact on cellular gene expression. The present study examines the effects of silver nanoparticles (NPs) on genes expression in an endeavor to assess the fundamental mechanisms that contribute to silver NP induced programmed cell death. Here, we have used RT-PCR to study the gene expression, flow cytometry analyses to probe the extent of apoptosis (FACS) and atomic force microscopy (AFM) to follow the cell membrane topology change induced by Ag NPs. The gene expression study revealed that Ag NP induced p53-mediated apoptotic pathway through which most of the chemotherapeutic drugs trigger apoptosis (programmed cell death). The results also suggest that Ag NPs could be attributed as therapeutic agent for biomedical and pharmaceutical applications
    • …
    corecore