167 research outputs found
The construction of a reliable potential for GeO2 from first-principles
The construction of a reliable potential for GeO2, from first-principles, is
described. The obtained potential, which includes dipole polarization effects,
is able to reproduce all the studied properties (structural, dynamical and
vibrational) to a high degree of precision with a single set of parameters. In
particular, the infrared spectrum was obtained with the expression proposed for
the dielectric function of polarizable ionic solutions by Weis et al. [J.M.
Caillol, D. Levesque and J.J. Weis, J. Chem. Phys. 91, 5544 (1989)]. The
agreement with the experimental spectrum is very good, with three main bands
that are associated to tetrahedral modes of the GeO2 network. Finally, we give
a comparison with a simpler pair-additive potential.Comment: 9 pages, 8 figure
Intermediate range chemical ordering of cations in simple molten alkali halides
The presence of first sharp diffraction peaks in the partial structure
factors is investigated in computer simulations of molten mixtures of alkali
halides. An intermediate range ordering appears for the Li+ ions only, which is
associated with clustering of this species and is not reflected in the
arrangement of other ions. This ordering is surprising in view of the
simplicity of the interionic interactions in alkali halides. The clustering
reflects an incomplete mixing of the various species on a local length scale,
which can be demonstrated by studying the complementary sub-space of cations in
the corresponding pure alkali halides by means of a void analysis.Comment: 5 pages, 5 figure
Models of electrolyte solutions from molecular descriptions: The example of NaCl solutions
We present a method to derive implicit solvent models of electrolyte
solutions from all-atom descriptions; providing analytical expressions of the
thermodynamic and structural properties of the ions consistent with the
underlying explicit solvent representation. Effective potentials between ions
in solution are calculated to perform perturbation theory calculations, in
order to derive the best possible description in terms of charged hard spheres.
Applying this method to NaCl solutions yields excellent agreement with the
all-atom model, provided ion association is taken into account.Comment: 4 pages, 5 figure
High-pressure behaviour of GeO2: a simulation study
In this work we study the high pressure behaviour of liquid and glassy GeO2
by means of molecular dynamics simulations. The interaction potential, which
includes dipole polarization effects, was parameterized from first-principles
calculations. Our simulations reproduce the most recent experimental data to a
high degree of precision. The proportion of the various GeOn polyhedra is
determined as a function of the pressure: a smooth transition from tetrahedral
to octahedral network is observed. Finally, the study of high-pressure, liquid
germania confirms that this material presents an anomalous behaviour of the
diffusivity as observed in analog systems such as silica and water. The
importance of penta-coordinated germanium ions for such behaviour is stressed.Comment: 16 pages, 4 figures, accepted as a Fast Track Communication on
Journal of Physics: Condensed Matte
Enantioseparation of flurbiprofen enantiomers using chiral ionic liquids by liquidâliquid extraction
Flurbiprofen is a kind of nonsteroidal antiâinflammatory drug, which has been widely used in clinic for treatment of rheumatoid arthritis and osteoarthritis. It has been reported that Sâflurbiprofen shows good performance on clinic antiâinflammatory treatment, while Râenantiomer almost has no pharmacological activities. It has important practical values to obtain optically pure Sâflurbiprofen. In this work, chiral ionic liquids, which have good structural designability and chiral recognize ability, were selected as the extraction selector by the assistance of quantum chemistry calculations. The distribution behaviors of flurbiprofen enantiomers were investigated in the extraction system, which was composed of organic solvent and aqueous phase containing chiral ionic liquid. The results show that maximum enantioselectivity up to 1.20 was attained at pH 2.0, 25°C using 1,2âdichloroethane as organic solvent, 1âbutylâ3âmethylimidazole Lâtryptophan ([Bmim][Lâtrp]) as chiral selector. The racemic flurbiprofen initial concentration was 0.2 mmol Lâ1, and [Bmim][Lâtrp] concentration was 0.02 mol Lâ1. Furthermore, the recycle of chiral ionic liquids has been achieved by reverse extraction process of the aqueous phase with chiral selector, which is significant for industrial application of chiral ionic liquids and scaleâup of the extraction process
The electric double layer has a life of its own
Using molecular dynamics simulations with recently developed importance
sampling methods, we show that the differential capacitance of a model ionic
liquid based double-layer capacitor exhibits an anomalous dependence on the
applied electrical potential. Such behavior is qualitatively incompatible with
standard mean-field theories of the electrical double layer, but is consistent
with observations made in experiment. The anomalous response results from
structural changes induced in the interfacial region of the ionic liquid as it
develops a charge density to screen the charge induced on the electrode
surface. These structural changes are strongly influenced by the out-of-plane
layering of the electrolyte and are multifaceted, including an abrupt local
ordering of the ions adsorbed in the plane of the electrode surface,
reorientation of molecular ions, and the spontaneous exchange of ions between
different layers of the electrolyte close to the electrode surface. The local
ordering exhibits signatures of a first-order phase transition, which would
indicate a singular charge-density transition in a macroscopic limit
In-situ high-temperature EXAFS measurements on radioactive and air-sensitive molten salt materials
The development at the Delft University of Technology (TU Delft, The Netherlands) of an experimental set-up dedicated to high-temperature in situ EXAFS measurements of radioactive, air-sensitive and corrosive fluoride salts is reported. A detailed description of the sample containment cell, of the furnace design, and of the measurement geometry allowing simultaneous transmission and fluorescence measurements is given herein. The performance of the equipment is tested with the room-temperature measurement of thorium tetrafluoride, and the ThâF and ThâTh bond distances obtained by fitting of the EXAFS data are compared with the ones extracted from a refinement of neutron diffraction data collected at the PEARL beamline at TU Delft. The adequacy of the sample confinement is checked with a mapping of the thorium concentration profile of molten salt material. Finally, a few selected salt mixtures (LiF:ThF4) = (0.9:0.1), (0.75:0.25), (0.5:0.5) and (NaF:ThF4) = (0.67:0.33), (0.5:0.5) are measured in the molten state. Qualitative trends along the series are discussed, and the experimental data for the (LiF:ThF4) = (0.5:0.5) composition are compared with the EXAFS spectrum generated from molecular dynamics simulations
Heat and charge transport in H2O at ice-giant conditions from ab initio molecular dynamics simulations
The impact of the inner structure and thermal history of planets on their observable features, such as luminosity or magnetic field, crucially depends on the poorly known heat and charge transport properties of their internal layers. The thermal and electric conductivities of different phases of water (liquid, solid, and super-ionic) occurring in the interior of ice giant planets, such as Uranus or Neptune, are evaluated from equilibrium ab initio molecular dynamics, leveraging recent progresses in the theory and data analysis of transport in extended systems. The implications of our findings on the evolution models of the ice giants are briefly discussed
In situ high-temperature EXAFS measurements on radioactive and air-sensitive molten salt materials
The development at the Delft University of Technology (TU Delft, The Netherlands) of an experimental set-up dedicated to high-temperature in situ EXAFS measurements of radioactive, air-sensitive and corrosive fluoride salts is reported. A detailed description of the sample containment cell, of the furnace design, and of the measurement geometry allowing simultaneous transmission and fluorescence measurements is given herein. The performance of the equipment is tested with the room-temperature measurement of thorium tetrafluoride, and the Th-F and Th-Th bond distances obtained by fitting of the EXAFS data are compared with the ones extracted from a refinement of neutron diffraction data collected at the PEARL beamline at TU Delft. The adequacy of the sample confinement is checked with a mapping of the thorium concentration profile of molten salt material. Finally, a few selected salt mixtures (LiF:ThF4) = (0.9:0.1), (0.75:0.25), (0.5:0.5) and (NaF:ThF4) = (0.67:0.33), (0.5:0.5) are measured in the molten state. Qualitative trends along the series are discussed, and the experimental data for the (LiF:ThF4) = (0.5:0.5) composition are compared with the EXAFS spectrum generated from molecular dynamics simulations
- âŠ