25 research outputs found

    Supernatants of acquired immunodeficiency syndrome-related Kaposi's sarcoma cells induce endothelial cell chemotaxis and invasiveness

    No full text
    Kaposi's sarcoma (KS) in general, and acquired immunodeficiency syndrome-related KS (AIDS-KS) in particular, is a highly invasive and intensely angiogenic neoplasm of unknown cellular origin. We have recently established AIDS-KS cells in long term culture and reported the development of KS-like lesions in nude mice inoculated with these cells. Here, we have examined the in vitro invasiveness of basement membrane by AIDS-KS cells, as well as the effect(s) of their supernatants on the migration and invasiveness of human vascular endothelial cells. AIDS-KS cells were highly invasive in the Boyden chamber invasion assay and formed invasive, branching colonies in a 3-dimensional gel (Matrigel). Normal endothelial cells form tube-like structures on Matrigel. AIDS-KS cell-conditioned media induced endothelial cells to form invasive clusters in addition to tubes. KS-cell-conditioned media, when placed in the lower compartment of the Boyden chamber, stimulated the migration of human and bovine vascular endothelial cells across filters coated with either small amounts of collagen IV (chemotaxis) or a Matrigel barrier (invasion). Basic fibroblast growth factor could also induce endothelial cell chemotaxis and invasion in these assays. However, when antibodies to basic fibroblast growth factor were used the invasive activity induced by the AIDS-KS-cell-conditioned media was only marginally inhibited, suggesting that the large quantities of basic fibroblast growth factor-like material released by the AIDS-KS cells are not the main mediators of this effect. Specific inhibitors of laminin and collagenase IV action, which represent critical determinants of basement membrane invasion, blocked the invasiveness of the AIDS-KS cell-activated endothelial cells in these assays. These data indicate that KS cells appear to be of smooth muscle origin but secrete a potent inducer of endothelial cell chemotaxis and invasiveness which could be responsible for angiogenesis and the resulting highly vascularized lesions. These assays appear to be a model to study the invasive spread and angiogenic capacity of human AIDS-related KS and should prove useful in the identification of molecular mediators and potential inhibitors of neoplastic neovascularization

    Histopathological detection of owl's eye inclusions is still specific for cytomegalovirus in the era of human herpesviruses 6 and 7

    No full text
    Background—Cytomegalovirus (CMV) is the prototype member of the ß-herpesvirinae, which can cause multiple organ dysfunction in the immunocompromised host. Human herpesvirus 6 (HHV-6) and HHV-7 are newer members of the ß-herpesvirinae that can cause febrile illness in young children and are also possible pathogens in the immunocompromised patient. Aim—CMV is detected in histopathological sections by visualisation of owl's eye inclusion bodies. The aim of this study was to quantify the relation between CMV, HHV-6, and HHV-7 viral loads and the presence of owl's eye inclusions in histological sections. Methods—Histopathological examination of postmortem material and recording of owl's eye inclusion bodies were performed. CMV, HHV-6, and HHV-7 were detected by qualitative and quantitative polymerase chain reaction (PCR) from the same postmortem samples. Statistical analysis of the histopathological and PCR results was performed. Results—There was a significant association between the detection of owl's eye inclusion bodies and positive CMV PCR (p < 0.001); the median CMV viral load was significantly higher in samples that were positive for owl's eye inclusions (p < 0.001). No association was found between the presence of owl's eye inclusions and HHV-6 or HHV-7 positivity. Conclusion—Histological detection of owl's eye inclusion bodies is an insensitive but highly specific method for detecting CMV organ involvement. Owl's eye inclusion bodies are not associated with HHV-6 or HHV-7 infection. Key Words: polymerase chain reaction • inclusion bodies • viral loa
    corecore